首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two polyvinylidenefluoride microfiltration membranes (GVHP and GVWP: Millipore, Bedford, MA) with a nominal pore size of 0.22 μm were challenged with mixed microbial cultures present in Milli-Q™ water and in secondary effluent, and with a Gram-negative model bacterium, SW8, to investigate bacterial passage. Total bacterial counts measured microscopically using the DNA fluorochrome DAPI revealed that the small bacteria in Milli-Q™ water passed MF membranes totally. The model bacterium, SW8 and bacteria from secondary effluent were mostly retained with log reduction values (LRV) of 4 and 3.5, respectively. Transmembrane pressure did not influence the levels of bacterial passage significantly. Pore size effects were investigated with track-etched membranes (Poretics™: Osmonics, Minnetonka MN) with nominal pore sizes of 0.2, 0.1 and 0.05 μm. The LRV of 0.2 μm membranes for SW8 and secondary effluent cells was 3 and 1.5, respectively (total counts). Both membranes with pore sizes smaller than 0.2 μm acted similarly, they still transmitted secondary effluent cells with LRV 2 log higher than 0.2 μm membranes, but for SW8 only 50% higher. In contrast to total count results, removal of bacteria was 100% with all membranes when assessed by cultureable counts, i.e. numbers of bacterial colonies recovered on R2A agar plates. Transmitted bacteria failed to grow on standard basal microbiology media most probably because they were injured during passage through the membranes to the extent that recovery in laboratory media did not occur. However, tests with CTC, an indicator of cell viability, indicated that approximately half of the cells of SW8 which passed the membranes had what appeared to be functional electron transfer chains in their membranes. All membranes had a pore size distribution which included pores larger than the nominal value. Field emission scanning electron microscopy (FESEM) provided evidence for entrapment of bacteria within the membrane matrix.  相似文献   

2.
α‐Aminoxy peptides are peptidomimetic foldamers with high proteolytic and conformational stability. To gain an improved synthetic access to α‐aminoxy oligopeptides we used a straightforward combination of solution‐ and solid‐phase‐supported methods and obtained oligomers that showed a remarkable anticancer activity against a panel of cancer cell lines. We solved the first X‐ray crystal structure of an α‐aminoxy peptide with multiple turns around the helical axis. The crystal structure revealed a right‐handed 28‐helical conformation with precisely two residues per turn and a helical pitch of 5.8 Å. By 2D ROESY experiments, molecular dynamics simulations, and CD spectroscopy we were able to identify the 28‐helix as the predominant conformation in organic solvents. In aqueous solution, the α‐aminoxy peptides exist in the 28‐helical conformation at acidic pH, but exhibit remarkable changes in the secondary structure with increasing pH. The most cytotoxic α‐aminoxy peptides have an increased propensity to take up a 28‐helical conformation in the presence of a model membrane. This indicates a correlation between the 28‐helical conformation and the membranolytic activity observed in mode of action studies, thereby providing novel insights in the folding properties and the biological activity of α‐aminoxy peptides.  相似文献   

3.
We have investigated the onset of the secondary structure and the evolution of two-dimensional infrared (2D IR) spectral patterns as a function of chain length with a study of 3(10)-helical peptides. The results show that 2D IR is highly sensitive to peptide conformation, disorder, and size. An extensive set of 2D IR spectra of C (alpha)-methylated homopeptides, Z-(Aib) n -O tBu ( n = 3, 5, 8, and 10), in CDCl 3 was measured in the amide-I region. The 2D spectral patterns of the tripeptide are quite different from those of the longer peptides. The spectral signatures begin to converge at the pentapeptide and become almost the same for the octa- and decapeptide. Simulations employing a vibrational exciton model were performed, with the local mode frequency shifts estimated from the intramolecular hydrogen bond electrostatic energies. The 2D spectra are well simulated using dihedral angle distributions around the average values (phi, psi) approximately (-57 degrees , -31 degrees) with a width of approximately 21 degrees. The simulated site-dependent amide-I local mode frequencies are in agreement with those from scaled semiempirical AM1 calculations. The tripeptide exhibits a more noticeable discrepancy between the experimental and simulated cross-peak patterns. This behavior suggests the presence of a peptide population outside the single beta-turn conformation. The onset of the 3(10)-helical secondary structure appears to already occur at the pentapeptide level.  相似文献   

4.
We present the synthesis and structure of various protein nanotubes comprised of an alternate layer-by-layer (LbL) assembly using a polycation as an electrostatic glue. The nanotubes were fabricated by sequential LbL depositions of positively charged polycations and negatively charged proteins into a porous polycarbonate (PC) membrane, followed by release of the cylindrical core by quick dissolution of the template with CH(2)Cl(2). This procedure provides a variety of protein nanotubes without interlayer cross-linking. The three-cycle depositions of poly-L-arginine (PLA) and human serum albumin (HSA, M(w)=66.5 kDa) into the porous PC template (pore diameter, D(p)=400 nm) yielded well-defined (PLA/HSA)(3) nanotubes with an outer diameter of 419+/-29 nm and a wall thickness of 46+/-8 nm, revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. The outer diameter of the tubules can be controlled by the pore size of the template (200-800 nm), whereas the wall thickness is always constant, independent of the D(p) value. The (PEI/HSA)(3) (PEI: polyethylenimine) nanotubes showed a slightly thin wall of 39+/-5 nm. CD spectra of the multilayered (PEI/HSA)(n) film on a flat quartz plate suggested that the secondary structure of HSA between the polycations was almost the same as that in aqueous solution. The three-cycle LbL depositions of PLA and ferritin (M(w)=460 kDa) or myoglobin (Mb, M(w)=1.7 kDa) into the porous PC membrane also gave cylindrical hollow structures. The wall thickness of the (PLA/ferritin)(3) and (PLA/Mb)(3) nanotubes were 55+/-5 nm and 31+/-4 nm; it depends on the globular size of the protein (ferritin>HSA>Mb). The individual ferritin molecule was clearly seen in the tubular walls by SEM and TEM measurements.  相似文献   

5.
Protein fouling remains a major problem in the use of microfiltration for many bioprocessing applications. Experiments were performed to evaluate the effect of membrane morphology and pore structure on protein fouling using different track-etched, isotropic, and asymmetric microfiltration membranes. Fouling of membranes with straight-through pores occurred by pore blockage caused by deposition of large protein aggregates on the membrane surface. However, the rate of blockage was a function of the membrane porosity due to the possibility of multiple pore blockage by a single protein aggregate on high porosity membranes. Membranes with interconnected pores fouled more slowly since the fluid could flow around the blocked pores through the interconnected pore structure. This behavior was quantified using model membrane systems with well-defined pore morphology constructed from track-etch and isotropic membranes in a layered series combination. These results provide important insights into the effects of membrane pore structure and morphology on protein fouling.  相似文献   

6.
Mesoporous silica materials with pore structures such as 2D hexagonal close packed, bicontinuous cubic, lamellar, sponge, wormhole-like, and rectangular have been made by using surfactant templating sol-gel processes. However, there are still some "intermediate" phases, in particular mesh phases, that are formed by surfactants but which have not been made into analogous silica pore structures. Here, we describe the one-step synthesis of mesoporous silica with a mesh phase pore structure. The cationic fluorinated surfactant 1,1,2,2-tetrahydroperfluorodecylpyridinium chloride (HFDePC) is used as the template. Like many fluorinated surfactants, HFDePC forms intermediate phases in water (including a mesh phase) over a wider range of compositions than do hydrocarbon surfactants. The materials produced by this technique are novel elongated particles in which the layers of the mesh phase are oriented orthogonal to the main axis of the particles.  相似文献   

7.
Lipopolysaccharide (LPS) provides a well-organized permeability barrier at the outer membrane of Gram-negative bacteria. Host defense cationic antimicrobial peptides (AMPs) need to disrupt the outer membrane before gaining access to the inner cytoplasmic membrane or intracellular targets. Several AMPs are largely inactive against Gram-negative pathogens due to the restricted permeation through the LPS layer of the outer membrane. MSI-594 (GIGKFLKKAKKGIGAVLKVLTTG) is a highly active AMP with a broad-spectrum of activities against bacteria, fungi, and virus. In the context of LPS, MSI-594 assumes a hairpin helical structure dictated by packing interactions between two helical segments. Residue Phe5 of MSI-594 has been found to be engaged in important interhelical interactions. In order to understand plausible structural and functional inter-relationship of the helical hairpin structure of MSI-594 with outer membrane permeabilization, a mutant peptide, termed MSI-594F5A, containing a replacement of Phe5 with Ala has been prepared. We have compared antibacterial activities, outer and inner membrane permeabilizations, LPS binding affinity, perturbation of LPS micelles structures by MSI-594 and MSI-594F5A peptides. Our results demonstrated that the MSI-594F5A has lower activities against Gram-negative bacteria, due to limited permeabilization through the LPS layer, however, retains Gram-positive activity, akin to MSI-594. The atomic-resolution structure of MSI-594F5A has been determined in LPS micelles by NMR spectroscopy showing an amphipathic curved helix without any packing interactions. The 3D structures, interactions, and activities of MSI-594 and its mutant MSI-594F5A in LPS provide important mechanistic insights toward the requirements of LPS specific conformations and outer membrane permeabilization by broad-spectrum antimicrobial peptides.  相似文献   

8.
Mills JO  Holland LA 《Electrophoresis》2004,25(9):1237-1242
Electrokinetic capillary chromatography is applied to determine the membrane affinity of peptides using both 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micelles and DHPC/1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bicelles under controlled conditions. The effect of temperature and the bicelle q value in surface association with cationic peptides is studied. The cationic peptides selected have a well-defined membrane structure (indolicidin), induced secondary structure (melittin, magainin 2), or do not possess classical secondary structure (atrial natriuretic peptide (ANP) 1-28, 4-28, 5-27). Electrokinetic capillary chromatography facilitated by DMPC and DHPC additives provides a rapid means of estimating lipophilicity and screening for peptides that have membrane affinity.  相似文献   

9.
细胞膜与膜蛋白之间的相互作用与生命中许多过程息息相关.以巨型脂质体(GUV)和多肽分别作为细胞膜和膜蛋白的简化模型,我们设计了四种仅包含亮氨酸(L)和赖氨酸(K)的多肽,即K14、(KL2KL2K)2、(KL2KL3)2和K6L8,并对比研究了它们与中性和负电性脂质体的相互作用.电荷密度最高的K14只是涂层在脂质体表面,不破其囊泡结构,但能够引起负电性脂质体发生微相分离,属建设性相互作用.能够形成两亲性α螺旋的(KL2KL2K)2和(KL2KL3)2则引起脂质体发生泄露和破裂,属破坏性作用.但二者引起泄露的速率在中性脂质体和负电性脂质体中的结果恰好相反,说明泄露分两步进行:表面吸附多肽达到一定浓度,继而对膜进行干扰.表面活性剂型多肽K6L8的氨基酸组成与(KL2KL2K)2相同,但K6L8只是引起负电性脂质体发生泄露,造成中性脂质体发生外出芽.这些简单氨基酸造成的脂质体的复杂构象变化可以统一用静电和疏水相互作用在膜上的位置和强度来进行解释.这些结论对于深入理解膜蛋白的作用机理是有帮助的.  相似文献   

10.
Lecithin:retinol acyltransferase (LRAT) is a 230 amino acid membrane-associated protein which catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester. A truncated form of LRAT (tLRAT), which contains the residues required for catalysis but which is lacking the N- and C-terminal hydrophobic segments, was produced to study its membrane binding properties. Measurements of the maximum insertion pressure of tLRAT, which is higher than the estimated lateral pressure of membranes, and the positive synergy factor a argue in favor of a strong binding of tLRAT to phospholipid monolayers. Moreover, the binding, secondary structure and orientation of the peptides corresponding to its N- and C-terminal hydrophobic segments of LRAT have been studied by circular dichroism and polarization-modulation infrared reflection absorption spectroscopy in monolayers. The results show that these peptides spontaneously bind to lipid monolayers and adopt an α-helical secondary structure. On the basis of these data, a new membrane topology model of LRAT is proposed where its N- and C-terminal segments allow to anchor this protein to the lipid bilayer.  相似文献   

11.
Ion channels constitute an important family of integral membrane proteins responsible for the regulation of ion transport across the cell membrane. Yet, the underlying energetics of the permeation events and how the latter are modulated by the environment, specifically near the mouth of the pore, remain only partially characterized. Here, a synthetic membrane channel formed by cyclic peptides of alternated d- and l-hydrophobic alpha-amino acids was considered. The free energy delineating the translocation of a sodium ion was measured along the conduction pathway by means of molecular dynamics simulations. The free-energy profiles that underly the permeation of the open-ended tubular structure are shown to not only depend on the characteristics of the latter but also inherently on the location of the mouth of the synthetic channel with respect to the membrane surface.  相似文献   

12.
Nature has selected peptide motifs for protein functions. It is clear that specific sequence motifs can identify families of enzymes. These sequence motifs are one dimensional signatures and nature has also developed two dimension motifs which cannot be read in the one dimension of sequence language but can be detected in the three dimensional properties of a secondary structure. One of such motifs is tilted peptides. They do not correspond to any consensus of sequence but correspond to a consensus motif where hydrophobicity balance is used as a functional device. In the nineteen eighties, the first tilted peptide was deciphered from the sequence of a virus fusion protein by molecular modelling. It was described as a protein fragment hydrophobic enough to insert into a membrane but too short to span it. The fragment exhibited an asymmetric distribution of hydrophobicity along the helix long axis and hence, was unable to lie parallel or perpendicular to a membrane surface but adopted an orientation in between. Hydrophobicity motif was a very new and very challenging concept and tilted peptides were rapidly found to be involved in several mechanisms of virus fusion. They were also found to be involved in protein secretion and future studies could establish their involvement in the destabilization of 3D protein structures and in the alpha to beta transconformations, which drive the generation of amyloid deposits.  相似文献   

13.
Membrane binding of proteins such as short chain dehydrogenase reductases or tail-anchored proteins relies on their N- and/or C-terminal hydrophobic transmembrane segment. In this review, we propose guidelines to characterize such hydrophobic peptide segments using spectroscopic and biophysical measurements. The secondary structure content of the C-terminal peptides of retinol dehydrogenase 8, RGS9-1 anchor protein, lecithin retinol acyl transferase, and of the N-terminal peptide of retinol dehydrogenase 11 has been deduced by prediction tools from their primary sequence as well as by using infrared or circular dichroism analyses. Depending on the solvent and the solubilization method, significant structural differences were observed, often involving α-helices. The helical structure of these peptides was found to be consistent with their presumed membrane binding. Langmuir monolayers have been used as membrane models to study lipid–peptide interactions. The values of maximum insertion pressure obtained for all peptides using a monolayer of 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) are larger than the estimated lateral pressure of membranes, thus suggesting that they bind membranes. Polarization modulation infrared reflection absorption spectroscopy has been used to determine the structure and orientation of these peptides in the absence and in the presence of a DOPE monolayer. This lipid induced an increase or a decrease in the organization of the peptide secondary structure. Further measurements are necessary using other lipids to better understand the membrane interactions of these peptides.  相似文献   

14.
Molecular dynamics simulations of the magainin MG-H2 peptide interacting with a model phospholipid membrane have been used to investigate the mechanism by which antimicrobial peptides act. Multiple copies of the peptide were randomly placed in solution close to the membrane. The peptide readily bound to the membrane, and above a certain concentration, the peptide was observed to cooperatively induce the formation of a nanometer-sized, toroidally shaped pore in the bilayer. In sharp contrast with the commonly accepted model of a toroidal pore, only one peptide was typically found near the center of the pore. The remaining peptides lay close to the edge of the pore, maintaining a predominantly parallel orientation with respect to the membrane.  相似文献   

15.
HIV-1 and influenza viral fusion peptides are biologically relevant model fusion systems and, in this study, their membrane-associated structures were probed by solid-state NMR (13)C chemical shift measurements. The influenza peptide IFP-L2CF3N contained a (13)C carbonyl label at Leu-2 and a (15)N label at Phe-3 while the HIV-1 peptide HFP-UF8L9G10 was uniformly (13)C and (15)N labeled at Phe-8, Leu-9 and Gly-10. The membrane composition of the IFP-L2CF3N sample was POPC-POPG (4:1) and the membrane composition of the HFP-UF8L9G10 sample was a mixture of lipids and cholesterol which approximately reflects the lipid headgroup and cholesterol composition of host cells of the HIV-1 virus. In one-dimensional magic angle spinning spectra, labeled backbone (13)C were selectively observed using a REDOR filter of the (13)C-(15)N dipolar coupling. Backbone chemical shifts were very similar at -50 and 20 degrees C, which suggests that low temperature does not appreciably change the peptide structure. Relative to -50 degrees C, the 20 degrees C spectra had narrower signals with lower integrated intensity, which is consistent with greater motion at the higher temperature. The Leu-2 chemical shift in the IFP-L2CF3N sample correlates with a helical structure at this residue and is consistent with detection of helical structure by other biophysical techniques. Two-dimensional (13)C-(13)C correlation spectra were obtained for the HFP-UF8L9G10 sample and were used to assign the chemical shifts of all of the (13)C labels in the peptide. Secondary shift analysis was consistent with a beta-strand structure over these three residues. The high signal-to-noise ratio of the 2D spectra suggests that membrane-associated fusion peptides with longer sequences of labeled amino acids can also be assigned with 2D and 3D methods.  相似文献   

16.
Human red blood cells (RBC) contain a cytoplasmic, nonhemoglobin protein which activates the (Ca2+-Mg2+)ATPase of isolated RBC membranes. Results presented in this paper confirm that activation of (Ca2+-Mg2+)ATPase is associated with binding of the cytoplasmic activator to the membrane. Binding of the cytoplasmic activator is reversible and dependent on ionic strength and Ca2+. Cytoplasmic activator is sensitive to trypsin but is not degraded when intact RBC are exposed to trypsin. Cytoplasmic activator does not modify the (Ca2+-Mg2+)-ATPase of membranes from RBC exposed to activator prior to hemolysis. Thus, the activator is located in the cell and appears to act by binding to the inner membrane surface.  相似文献   

17.
The increasing antimicrobial-resistant prevalence has become a severe health problem. It has led to the invention of a new antimicrobial agent such as antimicrobial peptides. Heteroscorpine-1 is an antimicrobial peptide that has the ability to kill many bacterial strains. It consists of 76 amino acid residues with a cecropin-like region in N-terminal and a defensin-like region in the C-terminal. The cecropin-like region from heteroscorpine-1 (CeHS-1) is similar to cecropin B, but it lost its glycine-proline hinge region. The bioinformatics prediction was used to help the designing of mutant peptides. The addition of glycine-proline hinge and positively charged amino acids, the deletion of negatively charged amino acids, and the optimization of the hydrophobicity of the peptide resulted in two mutant peptides, namely, CeHS-1 GP and CeHS-1 GPK. The new mutant peptide showed higher antimicrobial activity than the native peptide without increasing toxicity. The interaction of the peptides with the membrane showed that the peptides were capable of disrupting both the inner and outer bacterial cell membrane. Furthermore, the SEM analysis showed that the peptides created the pore in the bacterial cell membrane resulted in cell membrane disruption. In conclusion, the mutants of CeHS-1 had the potential to develop as novel antimicrobial peptides.  相似文献   

18.
We estimated in vitro membrane fluidity gradient in erythrocytes (RBC) from diabetic patients, using a fluorescent dye 1,6-diphenyl-1,3,5-hexatriene (DPH). The rate constant of DPH incorporation (k) into the membranes was determined by fitting experimental data to an exponential equation. Four important findings were made. First, membrane fluidity in the hydrocarbon region of RBC from diabetic patients is decreased compared with control cells (P<0.01). Second, the rate constant k of DPH incorporation into the membranes of RBC from diabetic patients was lower (P<0.01), which indicates an altered fluidity gradient in the membranes. Third, resorcylidene aminoguanidine (RAG) decreased significantly (P<0.001) the anisotropy values in RBC membranes from diabetic patients, which means that it apparently acted as a fluidizing agent. Lastly, no significant differences in the rate constants k were found between the control membranes (from RAG untreated RBC) and the membranes isolated from RAG pretreated blood from diabetic patients, as well as between the control membranes and those from RAG pretreated control blood. In conclusion, RAG affects lipid-protein interactions in RBC membranes, which results in membrane lipid bilayer fluidization and leads to the restoration of natural physiological membrane dynamic parameters in RBC from diabetic patients.  相似文献   

19.
The alumina ceramic membrane has been modified by the addition of palladium in order to improve the H(2) permeability and selectivity. Palladium-alumina ceramic membrane was prepared via a sol-gel method and subjected to thermal treatment in the temperature range 500-1100 degrees C. Fractal analysis from nitrogen adsorption isotherm is used to study the pore surface roughness of palladium-alumina ceramic membrane with different chemical composition (nitric acid, PVA and palladium) and calcinations process in terms of surface fractal dimension, D. Frenkel-Halsey-Hill (FHH) model was used to determine the D value of palladium-alumina membrane. Following FHH model, the D value of palladium-alumina membrane increased as the calcinations temperature increased from 500 to 700 degrees C but decreased after calcined at 900 and 1100 degrees C. With increasing palladium concentration from 0.5 g Pd/100 ml H(2)O to 2 g Pd/100 ml H(2)O, D value of membrane decreased, indicating to the smoother surface. Addition of higher amount of PVA and palladium reduced the surface fractal of the membrane due to the heterogeneous distribution of pores. However, the D value increased when nitric acid concentration was increased from 1 to 15 M. The effect of calcinations temperature, PVA ratio, palladium and acid concentration on membrane surface area, pore size and pore distribution also studied.  相似文献   

20.
A lipid bilayer deposited on an electrode surface can serve as a benchmark system to investigate lipid–protein interactions in the presence of physiological electric fields. Recoverin and myelin‐associated glycoprotein (MAG) are used to study the impact of strong and weak protein–lipid interactions on the structure of model lipid bilayers, respectively. The structural changes in lipid bilayers are followed using electrochemical polarization modulation infrared reflection–absorption spectroscopy (PM IRRAS). Recoverin contains a myristoyl group that anchors in the hydrophobic part of a cell membrane. Insertion of the protein into the 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphatidylcholine (DMPC)–cholesterol lipid bilayer leads to an increase in the capacitance of the lipid film adsorbed on a gold electrode surface. The stability and kinetics of the electric‐field‐driven adsorption–desorption process are not affected by the interaction with protein. Upon interaction with recoverin, the hydrophobic hydrocarbon chains become less ordered. The polar head groups are separated from each other, which allows for recoverin association in the membrane. MAG is known to interact with glycolipids present on the surface of a cell membrane. Upon probing the interaction of the DMPC–cholesterol–glycolipid bilayer with MAG a slight decrease in the capacity of the adsorbed lipid film is observed. The stability of the lipid bilayer increases towards negative potentials. At the molecular scale this interaction results in minor changes in the structure of the lipid bilayer. MAG causes small ordering in the hydrocarbon chains region and an increase in the hydration of the polar head groups. Combining an electrochemical approach with a structure‐sensitive technique, such as PM IRRAS, is a powerful tool to follow small but significant changes in the structure of a supramolecular assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号