首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermotropic aromatic polyesters based on 2,6-naphthalenedicarboxylic acid and 4,4′-dihydroxy-1,6-diphenoxyhexane 1a and -decane 1b have been synthesized by solution polymerization. The solid-state structures of these polyesters have been examined by high-resolution solid-state CP/MAS (cross polarization/magic angle spinning) and solution 13C-NMR. For precipitated original samples, alkylene spacers were generally in the all-trans form in the solid state. For once-melted samples, torsional gauche conformations were introduced to the spacers. The mesophase of the polyesters was identified as nematic. The temperature ranges of the nematic state of 1a and 1b were much wider than those of analogous polymers 2a and 2b based on terephthalic acid. For these polyesters, the substitution of the 2,6-naphthalene ring for the benzene ring induced no appreciable change in the conformation of the diphenoxy alkylene units in the solid state and on the melting points. Thermotropic ester model compounds, i.e., bis(4-butoxyphenyl) 2,6-naphthalate 3a and bis(4-butylphenyl) 2,6-naphthalate 3b have been prepared and characterized by both solid-state and solution NMR, which helped the interpretation of the solid-state structures of the polyesters. These spectra were compared with those of terephthalate-based related compounds 4a and 4b . The solid-state spectra suggest that the butoxyphenyl group of 3a and the butylphenyl group of 3b formed almost the same conformations as those of 4a and 4b , respectively.  相似文献   

2.
Six novel benzimidazole-based D-π-A compounds 4 a – 4 f were concisely synthesized by attaching different donor/acceptor units to the skeleton of 1,3-bis(1H-benzimidazol-2-yl)benzene on its 5-position through an ethynyl link. Due to the twisted conformation and effective conjugation structure, these dual-state emission (DSE) molecules show intense and multifarious photoluminescence, and their fluorescence quantum yields in solution and solid state can be up to 96.16 and 69.82 %, respectively. Especially, for excellent photostability, obvious solvatofluorochromic and extraordinary wide range of solvent compatibility, DSE molecule 4 a is a multifunctional fluorescent probe for the visual detection of nitroaromatic compounds (NACs) with the limit of detection as low as 10−7 M. The quenching mechanism has been proved as the results of photoinduced electron transfer and fluorescence resonance energy transfer processes. Importantly, probe 4 a can sensitively detect NACs not only in real water samples, but also on 4 a -coated strips and 4 a @PBAT thin films.  相似文献   

3.
A new family of p-quaterphenyls 1-6 laterally substituted with a bulky electron-accepting dimesitylboryl group has been designed and synthesized. These compounds were characterized by X-ray crystallography, UV-vis and fluorescence spectroscopy, and DFT calculations as well as thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and cyclic voltammetry (CV). X-ray single-crystal analysis revealed that the p-quaterphenyl main chain framework exhibits a twisted structure due to the steric effect of the lateral boryl group, and the intermolecular interactions are effectively suppressed in the solid state. Despite the significantly twisted main-chain structure, these molecules still display efficient intramolecular charge-transfer emissions with large Stokes shifts. An intriguing finding is that all these molecules show bright fluorescence with good to excellent quantum yields in the blue region in the solid state. In addition, the two representative p-quaterphenyls 3 and 4 containing both the electron-accepting boryl group and the electron-donating carbazolyl (3) or diphenylamino group (4) possess high thermal stability and good oxidation-reduction reversibility, which together with their excellent solid-state fluorescence efficiency make them promising bipolar transporting blue emitters.  相似文献   

4.
A series of symmetrical and unsymmetrical triptycene-based oligo(op-phenyleneethynylene)s were synthesized by deprotection of the acetone protected terminal alkynes, followed by Sonogashira coupling reactions. The photophysical properties of triptycene-based OPEs both in solution and solid state have been investigated by UV–Vis and fluorescence spectroscopy. Interestingly, the obtained compounds show strong fluorescence with partly high quantum yields in solid state, which suggested that triptycene moieties have not only prevented the intermolecular aggregation but also enforced the coplanarity of OPEs backbone in the solid state.  相似文献   

5.
The relationship between the photophysical properties and molecular orientation of 1,3,6,8-tetraalkylpyrenes in the solid state is described herein. The introduction of alkyl groups with different chain structures (in terms of length and branching) did not affect the photophysical properties in solution, but significantly shifted the emission wavelengths and fluorescence quantum yields in the solid state for some samples. Pyrenes bearing ethyl, isobutyl, or neopentyl groups at the 1-, 3-, 6-, and 8-positions showed similar emission profiles in both the solution and solid states. In contrast, pyrenes bearing other alkyl groups exhibited an excimer emission in the solid state, similar to that of the parent pyrene. On studying the photophysical properties in the solid state with respect to the obtained crystal structures, the observed solid-state photophysical properties were found to depend on the relative position of the pyrene chromophores. The solid-state photophysical properties can be controlled by the alkyl groups, which provide changing crystal packing. Among the pyrenes tested, 1,3,6,8-tetraethylpyrene showed the highest fluorescence quantum yield of 0.88 in the solid state.  相似文献   

6.
Although isoquinoline is a good traditional fluorescent structural unit, most of its derivatives emit fluorescence in solution and a few of them can emit solid‐state fluorescence as well. Herein, a series of multisubstituted 1‐aminoisoquinoline derivatives were synthesized by a simple reaction of a readily available 4H‐pyran derivative and secondary amines. The reaction had advantages of metal‐free, mild conditions, simple operation, and good yields, which was realized by a ring‐opening and sequential ring‐closing mechanism. These 1‐aminoisoquinoline derivatives were found to exhibit interesting dual‐state emissions. In the solution, they emitted strong blue fluorescence at about 458 nm. In the solid state, they emitted solid‐state blue fluorescence at 444–468 nm with high fluorescence quantum yields of 40.3–98.1%. Crystal structural analyses indicated that solid‐state emissions of these compounds originated from twisted molecular conformations and the resultant loose stacking arrangements. Furthermore, their solid‐state fluorescence wavelengths were demonstrated to depend on molecular conformations rather than stacking arrangements. The discovery of these 1‐aminoisoquinolines with multiple reaction sites provides new possibilities for the development of solid‐state fluorescent materials based on the traditional isoquinoline skeleton.  相似文献   

7.
Novel dendrimers G2PC and G4PC consisting of a p‐pentaphenylene core ( PC ) appended in the para position with two second‐generation ( G2 ) or two fourth‐generation ( G4 ) sulfonimide branches and two n‐octyl chains, as well as a model compound of the pentaphenylene core ( G0PC ), are prepared. The photophysical properties (absorption, emission, and excitation spectra; fluorescence decay lifetime; and fluorescence anisotropy spectra) of the three compounds are investigated under different experimental conditions (dichloromethane solution and solid state at 293 K, dichloromethane/methanol rigid matrix at 77 K). In the absorption spectra contributions from both the branches and the core can be clearly identified. The fluorescence spectra show only the characteristic fluorescence of the pentaphenylene unit with λmax around 410 nm in fluid solution and 420 nm in the solid state. In solution the fluorescence quantum yields are 0.78, 0.76, and 0.72 for G0PC , G2PC , and G4PC , respectively, and the fluorescence lifetime is about 0.7 ns in all cases. Energy transfer from the chromophoric groups of the dendrimer branches to the core does not occur. The three compounds show the same, high steady‐state anisotropy value (0.35) in dilute rigid‐matrix solution at 77 K. In dichloromethane at 293 K, the increasing anisotropy values along the series G0PC (0.17), G2PC (0.27), and G4PC (0.32), with increasing molecular volume of the three compounds, show that depolarization takes place by molecular rotation. In the solid state the anisotropy is very low (0.015, 0.017, and 0.035 for G0PC , G2PC , and G4PC , respectively), probably because of fast depolarization via energy migration.  相似文献   

8.
合成了两种单晶化合物二硫代酯1 和2,并对其经行了表征.二硫代酯1属于单斜晶系,空间群是P21/n; 二硫代酯2属于正交晶系,空间群是Pbca.此外,分别研究了两种二硫代酯在液态和固态中的荧光性能,发现二硫代酯1和2在乙腈溶剂中有很强的荧光,而在固体状态下没有荧光.这可能是由于在固态下分子间的堆积造成了荧光团发生迅速的π-π碰撞,从而导致荧光的自身淬灭.  相似文献   

9.
This study describes the synthesis, structure, and photophysical properties of a new luminescent polyaromatic boronic acid scaffold, diazaboryl-naphthyl-ketones (DNKs). These stable compounds display extremely bright fluorescence, aggregation-induced emission, positive solvatochromism, and solid-state fluorescence. DFT calculations and X-ray crystallographic study revealed notable electronic and structural differences between these compounds and the parent diaminonaphthalene (DAN) adducts. Acylation of the DAN system causes a localization of both HOMO and LUMO onto the DNK unit, which validates the negligible influence of the B-aryl substituent. The LUMO energy is lowered, and its shape significantly altered. Photophysical data in solution and the solid state revealed blue-shifted, narrowed, and intense emissions for DNKs (up to 89 % quantum yield). The potential utility of the fluorogenic DNK system was demonstrated with a proof-of-concept for the determination of trace boronic acid contaminants in solid samples, down to one-ppm level, using HPLC with fluorescence detection. This method could be useful in pharmaceutical development for the quantitation of difficult-to-detect and potentially mutagenic residual boronic acid from late cross-coupling reactions in drug syntheses.  相似文献   

10.
3-Imidazolyl coumarin molecules were synthesized under solvent-free condition and the optical properties both in solution and the solid state were determined. The compounds showed dual efficient luminescence, which were blue fluorescence with the highest fluorescence quantum yield being more than 0.9 and also exhibited favorable yellow solid-state fluorescence. Additionally, by using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculation, all structures were optimized and the associated optical performances showed similar results as the experimental results.  相似文献   

11.
Novel heterocyclic quinol-type fluorophores (4 a-c) and (5 a-c) that contain substituents (R = Me, Bu, Ph) with nonconjugated linkages to the chromophore skeleton have been synthesized and their photophysical properties have been investigated in solution and in the solid state. Considerable differences in the absorption and fluorescence spectra were observed between the two states. Quinols 4 a-c and 5 a-c exhibited almost the same absorption and fluorescence spectra in solution; however, their solid-state fluorescence excitation and emission spectra in the crystalline state were quite different. We performed X-ray crystallographic analyses to elucidate the dramatic effect of the substituents of the nonconjugated linkage on the solid-state fluorescence excitation and emission spectra. The relationships between the solid-state photophysical properties and the chemical and crystal structures of 4 a-c and 5 a-c are discussed on the basis of the X-ray crystal structures.  相似文献   

12.
Systematic structural perturbation has been used to fine‐tune and understand the luminescence properties of three new 1,8‐naphthalimides (NPIs) in solution and aggregates. The NPIs show blue emission in the solution state and their fluorescence quantum yields are dependent upon their molecular rigidity. In concentrated solutions of the NPIs, intermolecular interactions were found to quench the fluorescence due to the formation of excimers. In contrast, upon aggregation (in THF / H2O mixtures), the NPIs show aggregation‐induced emission enhancement (AIEE). The NPIs also show moderately high solid‐state emission quantum yields (ca. 10–12.7 %). The AIEE behaviour of the NPIs depends on their molecular rigidity and the nature of their intermolecular interactions. The NPIs 1 – 3 show different extents of intermolecular (π–π and C?H???O) interactions in their solid‐state crystal structures depending on their substituents. Detailed photophysical, computational and structural investigations suggest that an optimal balance of structural flexibility and intermolecular communication is necessary for achieving AIEE characteristics in these NPIs.  相似文献   

13.
A vapoluminescent triarylboron-functionalized platinum(II) complex that displays a mechanism of vapochromism differing from all previously reported platinum(II) compounds has been synthesized. The luminescence color of 1 switches in response to many volatile organic compounds in the solid state, including hexanes, CH(2)Cl(2), benzene, and methanol. While vapochromism due to changes in Pt-Pt or π-π stacking interactions has been commonly observed, absorption and luminescence studies and single-crystal and powder X-ray diffraction data as well as multinuclear solid-state NMR experiments ((195)Pt, (13)C, (11)B, (2)H, and (1)H) revealed that the vapochromic response of 1 is instead due to changes in the excited-state energy levels resulting from local interactions of solvent molecules with the complex. Furthermore, these interactions result in inversion of the lowest-energy excited states of the complex in some cases, the first observation of this phenomenon in the solid state.  相似文献   

14.
Four ring‐shaped silafluorene‐containing compounds ( 1 – 4 ) were synthesized and characterized as potentially promising monomers for fluorescent polymers. Their optical properties in solution and solid state (thin film and powder) were studied. These compounds have low quantum yields in solution (Φfl=0.13‐0.15) with fluorescence maxima at about 355 nm, but high quantum yields in the solid state (powder, Φfl=0.35‐0.54) with fluorescence maxima at about 377 and 488 nm. Influence of the substituents and the number of silafluorene units in 1 – 4 on their optical properties was investigated. Extensive study of the X‐ray crystal structures of 1 – 4 was undertaken to analyze and qualitatively estimate the role, extent, and influence of silafluorene moieties’ interactions on solid‐state fluorescent properties. Excited state UV/Vis and theoretical molecular orbital (MO) calculations were performed to explore possible fluorescence mechanisms and differences in quantum yields among these compounds.  相似文献   

15.
This contribution details the synthesis and chemical/physical characterization of a series of unconventional twisted pi-electron system electro-optic (EO) chromophores. Crystallographic analysis of these chromophores reveals large ring-ring dihedral twist angles (80-89 degrees) and a highly charge-separated zwitterionic structure dominating the ground state. NOE NMR measurements of the twist angle in solution confirm that the solid-state twisting persists essentially unchanged in solution. Optical, IR, and NMR spectroscopic studies in both the solution phase and solid state further substantiate that the solid-state structural characteristics persist in solution. The aggregation of these highly polar zwitterions is investigated using several experimental techniques, including concentration-dependent optical and fluorescence spectroscopy and pulsed field gradient spin-echo (PGSE) NMR spectroscopy in combination with solid-state data. These studies reveal clear evidence of the formation of centrosymmetric aggregates in concentrated solutions and in the solid state and provide quantitative information on the extent of aggregation. Solution-phase DC electric-field-induced second-harmonic generation (EFISH) measurements reveal unprecedented hyperpolarizabilities (nonresonant mubeta as high as -488,000 x 10(-48) esu at 1907 nm). Incorporation of these chromophores into guest-host poled polyvinylphenol films provides very large electro-optic coefficients (r(33)) of approximately 330 pm/V at 1310 nm. The aggregation and structure-property effects on the observed linear/nonlinear optical properties are discussed. High-level computations based on state-averaged complete active space self-consistent field (SA-CASSCF) methods provide a new rationale for these exceptional hyperpolarizabilities and demonstrate significant solvation effects on hyperpolarizabilities, in good agreement with experiment. As such, this work suggests new paradigms for molecular hyperpolarizabilities and electro-optics.  相似文献   

16.
Novel solid-emissive indeno[1,2-b]benzo[4,5-e]pyran-11-one-type fluorophores having non-planar structures with sterically hindered substituents (R = butyl, phenyl, and thienyl) have been designed and conveniently synthesized. The fluorescence quantum yields of in 1,4-dioxane were (Phi = 0.053) > (Phi = 0.013) > (Phi = 0.003). On the other hand, the solid-state fluorescence quantum yields of the fluorophores were (Phi = 0.39) > (Phi = 0.15) > (Phi = 0.06). To elucidate the large differences in the quantum yields in solution and in the solid state and among the fluorophores , we performed time-resolved fluorescence spectroscopic measurements, semi-empirical molecular orbital calculations (AM1 and INDO/S), and X-ray crystallographic analyses of . The comparison of the values of the radiative and non-radiative rate constants determined by the time-resolved spectroscopic measurements in solution and in the crystalline state supported that non-radiative decay is reduced by restriction of the rotation of the phenyl and thienyl rings in the solid state. In addition, the X-ray crystal structures demonstrated that, in and , the non-planar structure with sterically hindered substituents prevents the fluorophores from forming short pi-pi contacts and produces strong solid-state fluorescence. On the other hand, in the crystal of , the formation of continuous intermolecular CH[dot dot dot]S bonding between neighboring fluorophores was found to increase short pi-pi contacts and reduce the fluorescence intensity.  相似文献   

17.
Solution and solid-state proton decoupled 13C-NMR spectra were determined on two diimides derived from 4, 4′-oxydiphthalic anhydride. Comparison of the individual diimide spectra to that of a mixture of the two diimides indicates that ordering of these materials occurs in the solid state via charge transfer complex formation. A similar study was conducted using two isomeric dianhydrides, 4, 4′-isophthaloyldiphthalic anhydride (IDPA) and 4, 4′-terephthaloyldiphthalic anhydride (TDPA). The solution spectra of these compounds are similar and are those which would be expected for these compounds. However, their solid state spectra differ from each other. The solid-state spectrum of TDPA resembles its solution spectrum, whereas, that of IDPA differs greatly from its solution spectrum and indicates charge transfer complex formation occurs with this molecule. This difference is explained in terms of the stereochemistry of the two isomeric dianhydrides.  相似文献   

18.
Both solid-state and solution NMR relaxation measurements are routinely used to quantify the internal dynamics of biomolecules, but in very few cases have these two techniques been applied to the same system, and even fewer attempts have been made so far to describe the results obtained through these two methods through a common theoretical framework. We have previously collected both solution 13C and solid-state 2H relaxation measurements for multiple nuclei within the furanose rings of several nucleotides of the DNA sequence recognized by HhaI methyltransferase. The data demonstrated that the furanose rings within the GCGC recognition sequence are very flexible, with the furanose rings of the cytidine, which is the methylation target, experiencing the most extensive motions. To interpret these experimental results quantitatively, we have developed a dynamic model of furanose rings based on the analysis of solid-state 2H line shapes. The motions are modeled by treating bond reorientations as Brownian excursions within a restoring potential. By applying this model, we are able to reproduce the rates of 2H spin-lattice relaxation in the solid and 13C spin-lattice relaxation in solution using comparable restoring force constants and internal diffusion coefficients. As expected, the 13C relaxation rates in solution are less sensitive to motions that are slower than overall molecular tumbling than to the details of global molecular reorientation, but are somewhat more sensitive to motions in the immediate region of the Larmor frequency. Thus, we conclude that the local internal motions of this DNA oligomer in solution and in the hydrated solid state are virtually the same, and we validate an approach to the conjoint analysis of solution and solid-state NMR relaxation and line shapes data, with wide applicability to many biophysical problems.  相似文献   

19.
Organic salts of anthracene‐2,6‐disulfonic acid (ADS) with a wide variety of primary amines have been fabricated, and their arrangements of anthracene molecules and solid‐state fluorescence properties investigated. Single‐crystal X‐ray studies reveal that the salts show seven types of crystal forms and corresponding molecular arrangements of anthracene moieties depending on the amine, while anthracene shows only one form and arrangement in the solid state. Depending on the molecular arrangements, the ADS salts exhibit various solid‐state fluorescence properties: spectral shift (30 nm) and suppression and enhancement of the fluorescence intensity. Especially the ADS salt with n‐heptylamine (nHepA), which shows discrete anthracene moieties in the crystal, exhibits the highest quantum yield (ΦF=46.1±0.2 %) in the series of ADS salts, which exceeds that of anthracene crystal (ΦF=42.9±0.2 %). From these systematic investigations on the arrangements and the solid‐state properties, the following factors are essential for high fluorescence quantum yield in the solid state: prevention of contact between π planes of anthracene moieties and immobilization of anthracene rings. In addition, such organic salts have potential as a system for modulating the molecular arrangements of fluorophores and the concomitant solid‐state properties. Thus, systematic investigation of this system constructs a library of arrangements and properties, and the library leads to remarkable strategies for the development of organic solid materials.  相似文献   

20.
The photophysical and spectroscopic properties of a new class of oligothiophene derivatives, designated as cruciform oligomers, have been investigated in solution (room and low temperature) and in the solid state (as thin films in Zeonex matrixes). The study comprises absorption, emission, and triplet-triplet absorption spectra, together with quantitative measurements of quantum yields (fluorescence, intersystem crossing, internal conversion, and singlet oxygen formation) and lifetimes. The overall data allow the determination of the rate constants for all decay processes. From these, several conclusions are drawn. First, in solution, the main deactivation channels for the compounds are the radiationless processes: S(1) --> S(0) internal conversion and S(1) --> T(1) intersystem crossing. Second, in general, in the solid state, the fluorescence quantum yields decrease relative to solution. A comparison is made with the analogous linear alpha-oligothiophenes, revealing a lower fluorescence quantum efficiency and, in contrast to the normal oligothiophenes, that internal conversion is an important channel for the deactivation of the singlet excited state. Replacement of thiophene by 1,4-phenylene units in the longer-sized cruciform oligomer increases the fluorescence efficiency. The highly efficient generation of singlet oxygen through energy transfer from the triplet state (S(Delta) approximately 1) provides support for the measured intersystem crossing quantum yields and suggests that reaction with this may be an important pathway to consider for degradation of devices produced with these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号