首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2022,33(10):4437-4448
For more than a decade, the exfoliation of graphene and other layered materials has led to a tremendous amount of research in two-dimensional (2D) materials, among which 2D transition metal chalcogenides (TMCs) nanomaterials have attracted much attention in a wide range of applications including photoelectric devices, lithium-ion batteries, catalysis, and energy conversion and storage owing to their unique photoelectric physical properties. With such large specific surface area, strong near-infrared (NIR) absorption and abundant chemical element composition, 2D TMCs nanomaterials have become good candidates in biomedical imaging and cancer treatment. This review systematically summarizes recent progress on 2D TMCs nanomaterials, which includes their synthesis methods and applications in cancer treatment. At the end of this review, we also highlight the future prospects and challenges of 2D TMCs nanomaterials. It is expected that this work can provide the readers with a detailed overview of the synthesis of 2D TMCs and inspire more novel functional biomaterials based on 2D TMCs for cancer treatment in the future.  相似文献   

2.
Nanomaterials with layered structures, with their intriguing properties, are of great research interest nowadays. As one of the primary two‐dimensional nanomaterials, the hexagonal boron nitride nanosheet (BNNS, also called white graphene), which is an analogue of graphene, possesses various attractive properties, such as high intrinsic thermal conductivity, excellent chemical and thermal stability, and electrical insulation properties. After being discovered, it has been one of the most intensively studied two‐dimensional non‐carbon nanomaterials and has been applied in a wide range of applications. To support the exploration of applications of BNNSs, exfoliation, as one of the most promising approaches to realize large‐scale production of BNNSs, has been intensively investigated. In this review, methods to yield BNNSs by exfoliation will be summarized and compared with other potential fabrication methods of BNNSs. In addition, the future prospects of the exfoliation of h‐BN will also be discussed.  相似文献   

3.
Since mechanical exfoliation of graphene in 2004, unprecedented scientific and technological advances have been achieved in the development of two-dimensional (2D) nanomaterials. These 2D nanomaterials exhibit various unique mechanical, physical and chemical properties on account of their ultrathin thickness, which are highly desirable for many applications such as catalysis, optoelectronics, energy storage/conversion, as well as disease diagnosis and therapeutics. In this review, we summarized recent progress on the design and fabrication of functional 2D nanomaterials capable of being applied for the cancer treatment including drug delivery, photodynamic therapy, and photothermal therapy. Their anticancer mechanisms were discussed in detail, and the related safety concerns were analyzed based on current research developments. This review is expected to provide an insight in the field of 2D nanostructured materials for anticancer applications.  相似文献   

4.
Carbon nanomaterials have attracted the attention of the scientific community for more than 30 years now; first with fullerene, then with nanotubes and now with graphene and graphene related materials. Graphene quantum dots (GQDs) are nanoparticles of graphene that can be synthesized following two approaches, namely top-down and bottom-up methods. The top-down synthesis used harsh chemical and/or physical treatments of macroscopic graphitic materials to obtain nanoparticles, while the second is based on organic chemistry through the synthesis of polycyclic aromatic hydrocarbons exhibiting various sizes and shapes that are perfectly controlled. The main drawback of this approach is related to the low solubility of carbon materials that prevents the synthesis of nanoparticles containing more than few hundreds of sp2 carbon atoms. Here we report on the synthesis of a family of rectangular-shaped graphene quantum dots containing up to 162 sp2 carbon atoms. These graphene quantum dots are not functionalized on their periphery in order to keep the maximum similarity with nanoparticles of pure graphene. We chose water with sodium deoxycholate surfactant to study their dispersion and their optical properties (absorption, photoluminescence and photoluminescence excitation). The electronic structure of the particles and of their aggregates are studied using Tight-Binding (TB). We observe that the larger particles ( GQD 3 and GQD 4 ) present a slightly better dispensability than the smaller ones, probably because the larger GQDs can accommodate more surfactant molecules on each side, which helps to stabilize their dispersion in water.  相似文献   

5.
Metal–organic framework (MOF) and covalent organic framework (COF) nanosheets are a new type of two-dimensional (2D) materials with unique design principles and various synthesis methods. They are considered ideal electrochemical devices due to the ultrathin thickness, easily tunable molecular structure, large porosity and other unique properties. There are two common methods to synthesize 2D MOF/COF nanosheets: bottom-up and top-down. The top-down strategy mainly includes ultrasonic assisted exfoliation, electrochemical exfoliation and mechanical exfoliation. Another strategy mainly includes interface synthesis, modulation synthesis, surfactant-assisted synthesis. In this Review, the development of ultrathin 2D nanosheets in the field of electrochemistry (supercapacitors, batteries, oxygen reduction, and hydrogen evolution) is introduced, and their unique dimensional advantages are highlighted.  相似文献   

6.
自2004年被成功制备后,石墨烯因其独特迷人的性质在近十几年来备受关注,同时也引发了二维纳米材料的研究热潮。单原子层厚度的二维结构赋予石墨烯非同寻常的光学、电子学、磁学及力学等性质,使得石墨烯在生物学、医学、化学、物理学和环境科学等多个领域展现出极大的应用潜力。制得注意的是,石墨烯在应用时通常需要进行功能化,调节其组成、大小、形状和结构等,以便于加工处理或满足不同的应用需求。石墨烯功能化方法多样,功能化产物也是种类繁多。然而,到目前为止,石墨烯功能化产物并没有系统全面的分类和精确的定义。因此,本文在系统总结现有石墨烯功能化研究的基础上,给出了石墨烯功能化产物的系统分类、各类的精确定义和相应的制备策略,并通过典型示例进行了详细地阐述。石墨烯功能化的产物统称为“功能化石墨烯材料”,分为两类:“功能化石墨烯”和“功能化石墨烯复合材料”。功能化石墨烯材料的制备可由“自上而下”和“自下而上”两种策略实现。制备策略的选择取决于应用需求。系统分类、精确命名和制备策略的归纳必将有助于功能化石墨烯材料的进一步发展。  相似文献   

7.
Monolayer two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides (TMDCs), provide a versatile platform for exploring novel physical phenomena at the 2D limit, and show great promise for next-generation electronic, optoelectronic, and quantum devices. To overcome the weak van der Waals interaction in the bulk layered crystal and achieve high quality single-crystal monolayers is a crucial task in top-down mechanical exfoliation. Tape exfoliation has long been the dominant approach to obtain single-crystal monolayers with high quality. More recently, there has been a fast development of using metals as an intermediate to enhance monolayer area and exfoliation yield. This review will provide a survey of mechanical exfoliation strategies of tape and metal-assisted exfoliations, particularly for the most popular graphene and TMDC materials. The interfacial interaction and lateral strain between monolayer and other materials such as oxides and metals play a crucial role in monolayer selectivity and yield. The challenges and opportunities will be highlighted for future development of exfoliating procedures to achieve large-area and high-quality 2D material monolayers and artificial stacks.  相似文献   

8.
2D materials are single or few layered materials consisting of one or several elements with a thickness of a few nanometres. Their unique, tuneable physical and chemical properties including ease of chemical functionalisation makes this class of materials useful in a variety of technological applications. The feasibility of 2D materials strongly depends on better synthetic approaches to improve properties, increase performance, durability and reduce costs. As such, in the synthesis of nanomaterials, hydrothermal processes are widely adopted through a precursor–product synthesis route. This method includes batch or continuous flow systems, both employing water at elevated temperatures (above boiling point) and pressures to fine-tune the physical, chemical, optical and electronic properties of the nanomaterial. Both techniques yield particles with different morphology, size and surface area due to different mechanisms of particle formation. In this Minireview, we present batch and continuous hydrothermal flow synthesis of a selection of 2D derivatives (graphene, MXene and molybdenum disulfide), their chemical functionalisation as an advantageous approach in exploring properties of these materials as well as the benefits and challenges of employing these processes, and an outlook for further research.  相似文献   

9.
The production of graphene from various sources has garnered much attention in recent years with the development of methods that range from “bottom‐up” to “top‐down” approaches. The top‐down approach often requires thermal treatment to obtain a few‐layered and lowly oxygenated graphene sheets. Herein, we demonstrate the production of graphene through oxidation and thermal‐reduction/exfoliation of two sources of differently orientated graphene sheets: multiwalled carbon nanotubes (MWCNTs) and stacked graphene nanofibers (SGNFs). These two carbon‐nanofiber‐like materials have similar axial (length: 5–9 μm) and lateral dimensions (diameter: about 100 nm). We demonstrate that, whereas SGNFs exfoliate along the lateral plane between adjacent graphene sheets, carbon nanotubes exfoliate along its longitudinal axis and leads to opening of the carbon nanotubes owing to the built‐in strain. Subsequent thermal exfoliation leads to graphene materials that have, despite the fact that their parent materials exhibited similar dimensions, dramatically different proportions and, consequently, materials properties. Graphene that was prepared from MWCNTs exhibited dimensions of about 5000×300 nm, whereas graphene that was prepared from SGNFs exhibited sheets with dimensions of about 50×50 nm. The density of defects and oxygen‐containing groups on these materials are dramatically different, as are the electrochemical properties. We performed morphological, structural, and electrochemical characterization based on TEM, SEM, high‐resolution X‐ray photoelectron spectroscopy, Raman spectroscopy, and cyclic voltammetry (CV) analysis on the stepwise conversion of the target source into the exfoliated graphene. Morphological and structural characterization indicated the successful chemical and thermal treatment of the materials. Our findings have shown that the orientation of the graphene sheets in starting materials has a dramatic influence on their chemical, material, and electrochemical properties.  相似文献   

10.
Top‐down methods are of key importance for large‐scale graphene and graphene oxide preparation. Electrochemical exfoliation of graphite has lately gained much interest because of the simplicity of execution, the short process time, and the good quality of graphene that can be obtained. Here, we test three different electrolytes, that is, H2SO4, Na2SO4, and LiClO4, with a common exfoliation procedure to evaluate the difference in structural and chemical properties that result for the graphene. The properties are analyzed by means of scanning transmission electron microscopy (STEM), Raman spectroscopy, and X‐ray photoelectron spectroscopy. We then tested the graphene materials for electrochemical applications, measuring the heterogeneous electron transfer (HET) rates with a Fe(CN)63?/4? redox probe, and their capacitive behavior in alkaline solutions. We correlate the electrochemical features with the presence of structural defects and oxygen functionalities on the graphene materials. In particular, the use of LiClO4 during the electrochemical exfoliation of graphite allowed the formation of highly oxidized graphene with a C/O ratio close to 4.0 and represents a possible avenue for the mass production of graphene oxide as valid alternative to the current laborious and dangerous chemical procedures, which also have limited scalability.  相似文献   

11.
Two‐dimensional (2D) materials are known to be useful in catalysis. Engineering 3D bulk materials into the 2D form can enhance the exposure of the active edge sites, which are believed to be the origin of the high catalytic activity. Reported herein is the production of 2D “few‐layer” antimony (Sb) nanosheets by cathodic exfoliation. Application of this 2D engineering method turns Sb, an inactive material for CO2 reduction in its bulk form, into an active 2D electrocatalyst for reduction of CO2 to formate with high efficiency. The high activity is attributed to the exposure of a large number of catalytically active edge sites. Moreover, this cathodic exfoliation process can be coupled with the anodic exfoliation of graphite in a single‐compartment cell for in situ production of a few‐layer Sb nanosheets and graphene composite. The observed increased activity of this composite is attributed to the strong electronic interaction between graphene and Sb.  相似文献   

12.
3D concrete printing (3DCP) is an emerging additive manufacturing technology in the construction industry. Its challenges lie in the development of high-performance printable materials and printing processes. Recently developed carbon-based nanomaterials (CBNs) such as graphene, graphene oxide, graphene nanoplatelets, and carbon nanotubes, have various applications due to their exceptional mechanical, chemical, thermal, and electrical characteristics. CBNs also have found potential applications as a concrete ingredient as they enhance the microstructure and modify concrete properties at the molecular level. This paper focuses on state-of-the-art studies on CBNs, 3DCP technology, and CBNs in conventional and 3D printable cement-based composites including CBN dispersion techniques, concrete mixing methods, and fresh and hardened properties of concrete. Furthermore, the current limitations and future perspectives of 3DCP using CBNs to produce high-quality composite mixtures are discussed.  相似文献   

13.
The chemical production of graphene as well as its controlled wet chemical modification is a challenge for synthetic chemists. Furthermore, the characterization of reaction products requires sophisticated analytical methods. In this Review we first describe the structure of graphene and graphene oxide and then outline the most important synthetic methods that are used for the production of these carbon‐based nanomaterials. We summarize the state‐of‐the‐art for their chemical functionalization by noncovalent and covalent approaches. We put special emphasis on the differentiation of the terms graphite, graphene, graphite oxide, and graphene oxide. An improved fundamental knowledge of the structure and the chemical properties of graphene and graphene oxide is an important prerequisite for the development of practical applications.  相似文献   

14.
近年来, 二维材料由于其独特的结构以及高电化学活性在储能领域中备受关注. 然而在实际应用中, 二维材料的“面-面”堆叠极大地限制了其性能的发挥. 凝胶化作为实现纳米材料液相三维组装的重要手段, 不仅可以有效减少二维材料的团聚, 保留更多活性位点, 同时形成的三维网络结构可以提供畅通的离子电子传输通道, 提升材料在储能应用中的实用性. 不仅如此, 二维材料的凝胶化在电极材料孔结构设计以及活性物质缓冲空间定制方面具有先天优势. 本文以氧化石墨烯凝胶化过程的方法和原理为基础, 综合评述了石墨烯及其它几类较典型的二维材料的凝胶化机制及方法, 梳理了其孔结构调控策略, 并对凝胶化二维储能材料的设计以及应用进行了归纳、 总结及展望.  相似文献   

15.
Graphene, a two-dimensional (2D) layered nanomaterial, which has attracted great attention in the environmental field due to its excellent physical and chemical properties, including easily modified surface characteristics, tunable structure, and excellent stability. However, the inherent problems of nanomaterials, such as serious aggregation, difficulty in recycling, and potential ecological risks, have severely hindered the large-scale application of graphene. Therefore, immobilization of nanomaterials into macroscopic structures is one of the most feasible strategies to solve these problems, which is of great significance to promote the progress of nano-water treatment chemistry and technology. With the deepening of related studies, diverse dimensional graphene materials with large specific surface area, internal interconnected porous network and novel functionalities have been successively developed. Herein, we review the structural characteristics and synthesis methods of multi-dimensional graphene materials and highlight some examples with impressive and unique properties. Furthermore, we specifically emphasize their removal performance and mechanisms for organic contaminants in adsorption and membrane separation. Finally, the future outlooks, research directions and foreseeable challenges in this filed are summarized and prospected as concluding remarks based on our understanding.  相似文献   

16.
We present a new, facile and efficient method to prepare functional graphene (GN) hybrid nanomaterials using direct electrolytic exfoliation of graphite robs in hemin (HN) and single-walled carbon nanotube (SWCNT) solution. During the exfoliation process, HN and SWCNT were simultaneously adsorbed on the surface of GN nanosheets through noncovalent π–π interaction, and then 3D GN–HN–SWCNT hybrid nanomaterials were formed. Due to the synergic effect among GN, HN, and SWCNT, these hybrid nanomaterials possessed excellent electrocatalysis properties and were used to construct novel electrochemical biosensor for H2O2 determination. The results displayed a wide linear range of 0.2 μM–0.4 mM and a low detection limit of 0.05 μM. Moreover, the developed sensor was successfully applied for real samples, such as beverages, and showed great promise in routine sensing applications.  相似文献   

17.
石乃恩  宋传远  张俊  黄维 《物理化学学报》2016,32(10):2447-2461
金属卟啉是一种重要的金属-有机复合物,在光电转换器件、催化、传感、医学等领域有着广阔的应用前景。对无机二维纳米材料(石墨烯或过渡金属硫属化合物等)的广泛研究促使金属-有机二维纳米材料成为当前的研究热点之一。本文针对金属-有机以及卟啉二维纳米材料的研究现状,在简要回顾金属-有机二维纳米材料发展历史的基础上,详细总结了金属卟啉单分散二维纳米晶和二维薄膜的制备方法,综述了其当前在太阳能电池、光电催化以及光学传感等方面的应用,最后讨论了金属卟啉二维纳米材料当前面临的研究问题及未来可能的发展方向。  相似文献   

18.
Two‐dimensional (2D) layered nanomaterials, e.g. graphene and molybdenum disulfide (MoS2), have rapidly emerged in material sciences due to their unique physical, chemical and mechanical properties. In the meanwhile, there is a growing interest in constructing electrochemical sensors for a wide range of chemical and biological molecules by using these 2D nanomaterials. In this review, we summarize recent advances on using graphene and MoS2 for the development of electrochemical sensors for small molecules, proteins, nucleic acids and cells detection. We also provide our perspectives in this rapidly developing field.  相似文献   

19.
石墨烯量子点(GQDs)是一种新型碳基准零维材料,不但具有石墨烯的独特平面结构,同时具备碳点的量子限制效应和边界效应。GQDs具有独特的光学性质、低毒性、高荧光稳定性和高生物相容性,被广泛应用于检测、传感、催化、细胞成像、药物递送和污染治理等领域。GQDs的合成分为自上而下法和自下而上法,前者将大尺寸的石墨烯、石墨、碳材料切割成纳米级的量子点,后者使用不同的前驱体,通过水热法、热裂解法等方法合成石墨烯量子点。柠檬酸(CA)是一种重要的有机酸,室温下是白色结晶状粉末,是自下而上法合成GQDs的一种常用前驱体,近年来有许多关于以CA为前驱体合成不同GQDs的研究,以CA为前驱体合成的GQDs(CA-GQDs)在生物医药、荧光检测、成像等领域均有应用,具有较好的应用前景。对近年来基于CA的合成方法和具体应用进行了总结和回顾,旨在将现有CA-GQDs的相关成果尽可能汇总和展现,以对相关领域研究工作者提供一定参考,并对未来CA-GQDs较有前景的研究方向进行了展望。  相似文献   

20.
杜春保  胡小玲  张刚  程渊 《物理化学学报》2019,35(10):1078-1089
二维材料的超薄原子层结构使其具有独特的力学性能、导热导电性以及巨大的比表面积,在能源存储、催化、传感和生物医学等领域引起了国内外学者的广泛关注。将二维材料与具有生物活性的生物大分子相结合可以为开发具有优异电学、力学和生物学功能的特种功能材料提供新的方法和途径。近年来,科研工作者针对这一方向展开了广泛的研究,取得了一系列重要的成果,使二维材料与生物大分子的结合与应用成为了新的研究热点。本文综述了近年来二维材料和生物大分子之间的相互作用及应用的研究进展,重点介绍了二维材料与生物大分子在分子水平上的相互作用机理,还总结了基于二维材料与生物大分子之间的相互作用在工程、疾病治疗和抗菌中的应用,并对其未来的研究趋势提出了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号