首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Electrophoresis》2017,38(7):953-976
Microfluidics has emerged following the quest for scale reduction inherent to micro‐ and nanotechnologies. By definition, microfluidics manipulates fluids in small channels with dimensions of tens to hundreds of micrometers. Recently, microfluidics has been greatly developed and its influence extends not only the domains of chemical synthesis, bioanalysis, and medical researches but also optics and information technology. In this review article, we will shortly discuss an enlightening analogy between electrons transport in electronics and fluids transport in microfluidic channels. This analogy helps to master transport and sorting. We will present some complex microfluidic devices showing that the analogy is going a long way off toward more complex components with impressive similarities between electronics and microfluidics. We will in particular explore the vast manifold of fluidic operations with passive and active fluidic components, respectively, as well as the associated mechanisms and corresponding applications. Finally, some relevant applications and an outlook will be cited and presented.  相似文献   

2.
Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.  相似文献   

3.
In this paper, we present gold-plating polycarbonate (PC) microchannels. The fabrication of the gold microfluidic channels is achieved by tuning the sequence of reagent insertion into milled and closed submillimeter PC system channels. The resulting gold surface can be utilized in many applications where the benefits of microfluidics, (bio)chemistry of surfaces, and electrochemistry can be combined. Here, we combine the advantages of electrochemistry with microfluidics by mixing the gold sensor with microfluidics. This approach differs from the classic one – the sensor will undergo modifications (e. g., shape and size) depending on the specific scientific problem and will be designed individually; hence its characteristics will be changed. Our goal in this work is to indicate new possibilities for combining two methodologies – electrochemistry and microfluidics. In our work, we emphasize that it confirms the validity of our chosen concept (proof-of-concept). In this work, we present one such application, the use of a gold microfluidic channel as a working electrode (WE). We describe the microchip‘s construction and electrochemical characterization, including the gold flow-through WE, the Ag/AgCl wire pseudo-reference, and the Pt auxiliary electrode. The measured current is the result of the flow through a rectangular duct of the gold microchannel electrode embedded in the four walls of the chip.  相似文献   

4.
Sollier E  Murray C  Maoddi P  Di Carlo D 《Lab on a chip》2011,11(22):3752-3765
Multiple methods of fabrication exist for microfluidic devices, with different advantages depending on the end goal of industrial mass production or rapid prototyping for the research laboratory. Polydimethylsiloxane (PDMS) has been the mainstay for rapid prototyping in the academic microfluidics community, because of its low cost, robustness and straightforward fabrication, which are particularly advantageous in the exploratory stages of research. However, despite its many advantages and its broad use in academic laboratories, its low elastic modulus becomes a significant issue for high pressure operation as it leads to a large alteration of channel geometry. Among other consequences, such deformation makes it difficult to accurately predict the flow rates in complex microfluidic networks, change flow speed quickly for applications in stop-flow lithography, or to have predictable inertial focusing positions for cytometry applications where an accurate alignment of the optical system is critical. Recently, other polymers have been identified as complementary to PDMS, with similar fabrication procedures being characteristic of rapid prototyping but with higher rigidity and better resistance to solvents; Thermoset Polyester (TPE), Polyurethane Methacrylate (PUMA) and Norland Adhesive 81 (NOA81). In this review, we assess these different polymer alternatives to PDMS for rapid prototyping, especially in view of high pressure injections with the specific example of inertial flow conditions. These materials are compared to PDMS, for which magnitudes of deformation and dynamic characteristics are also characterized. We provide a complete and systematic analysis of these materials with side-by-side experiments conducted in our lab that also evaluate other properties, such as biocompatibility, solvent compatibility, and ease of fabrication. We emphasize that these polymer alternatives, TPE, PUMA and NOA, have some considerable strengths for rapid prototyping when bond strength, predictable operation at high pressure, or transitioning to commercialization are considered important for the application.  相似文献   

5.
《Electrophoresis》2018,39(2):417-424
Herein, we proposed a strategy for controlling the particle focusing position in Dean‐coupled elasto‐inertial flows via adjusting the polymer concentration of viscoelastic fluids. The physics behind the control strategy was then explored and discussed. At high polymer concentrations, the flowing particles could be single‐line focused exactly at the channel centerline under the dominated elastic force. The center‐line focusing in our spiral channel may employed as a potential pretreatment scheme for microflow cytometry detection. With further decreasing polymer concentrations, the particles would shift into the outer channel region under the comparable competition between inertial lift force, elastic force and Dean drag force. Finally, the observed position‐shifting was successfully employed for particle concentration at a throughput much higher than most existing elasto‐inertial microfluidics.  相似文献   

6.
Electrochemical biosensors are particularly suitable for miniaturization and integration in microfluidic devices. Applications include the detection of whole cells, cell components, proteins, and small molecules to address tasks in the fields of diagnostics and food and environmental control. Microfluidic setups range from simple channels for sample transport to channels with integrated sensing electrodes to highly sophisticated platforms with additional elements for sample preparation. The design of the microfluidics depends on both the type of detection and on the application and sample material. This review summarizes recent work on electrochemical biosensors with integrated microfluidics with the focus on developments for real sample applications, particularly those including measurements with real sample media.  相似文献   

7.
Xiao Z  Zhang B 《色谱》2011,29(10):949-956
液滴微流控系统是微流控芯片领域的一个新的分支,由于其诸多独特的优势而得到了广泛的研究和报道。本文对液滴的制备和相关的操控技术,包括液滴的分裂、融合、混合、分选、存储和编码等进行了介绍,对液滴技术近年来在化学与生物化学分析等领域中的应用进行了综述,并展望了液滴微流控技术的发展前景。  相似文献   

8.
Choi YS  Seo KW  Lee SJ 《Lab on a chip》2011,11(3):460-465
The inertial migration of particles in micro-scale flows has received much attention due to its promising applications, such as the membrane-free passive separation of particles or cells. The particles suspended in rectangular channels are known to be focused near the center of each channel face as the channel Reynolds number (R(C)) increases due to the lift force balance and the hydrodynamic interactions of the particles with the wall. In this study, the three-dimensional positions of neutrally buoyant spherical particles inside a square microchannel are measured using the digital holographic microscopy technique, and a transition from the lateral tubular pinch to the cross-lateral focusing with increasing R(C) is reported. The particles are found to migrate first in the lateral direction and then cross-laterally toward the four equilibrium positions. A general criterion that can be used to secure the fully developed state of particle focusing in Lab-on-a-Chip applications is also derived. This criterion could be helpful for the accurate estimation of the design parameters of inertial microfluidic devices, such as R(C), channel length and width, and particle diameter.  相似文献   

9.
Chen PJ  Shih CY  Tai YC 《Lab on a chip》2006,6(6):803-810
This paper presents a novel channel fabrication technology of bulk-micromachined monolithic embedded polymer channels in silicon substrate. The fabrication process favorably obviates the need for sacrificial materials in surface-micromachined channels and wafer-bonding in conventional bulk-micromachined channels. Single-layer-deposited parylene C (poly-para-xylylene C) is selected as a structural material in the microfabricated channels/columns to conduct life science research. High pressure capacity can be obtained in these channels by the assistance of silicon substrate support to meet the needs of high-pressure loading conditions in microfluidic applications. The fabrication technology is completely compatible with further lithographic CMOS/MEMS processes, which enables the fabricated embedded structures to be totally integrated with on-chip micro/nano-sensors/actuators/structures for miniaturized lab-on-a-chip systems. An exemplary process was described to show the feasibility of combining bulk micromachining and surface micromachining techniques in process integration. Embedded channels in versatile cross-section profile designs have been fabricated and characterized to demonstrate their capabilities for various applications. A quasi-hemi-circular-shaped embedded parylene channel has been fabricated and verified to withstand inner pressure loadings higher than 1000 psi without failure for micro-high performance liquid chromatography (microHPLC) analysis. Fabrication of a high-aspect-ratio (internal channel height/internal channel width, greater than 20) quasi-rectangular-shaped embedded parylene channel has also been presented and characterized. Its implementation in a single-mask spiral parylene column longer than 1.1 m in a 3.3 mm x 3.3 mm square size on a chip has been demonstrated for prospective micro-gas chromatography (microGC) and high-density, high-efficiency separations. This proposed monolithic embedded channel technology can be extensively implemented to fabricate microchannels/columns in high-pressure microfluidics and high-performance/high-throughput chip-based micro total analysis systems (microTAS).  相似文献   

10.
11.
The fabrication of microfluidic channels with complex three-dimensional (3D) geometries presents a major challenge to the field of microfluidics, because conventional lithography methods are mainly limited to rectangular cross-sections. In this paper, we demonstrate the use of mechanical micromachining to fabricate microfluidic channels with complex cross-sectional geometries. Micro-scale milling tools are first used to fabricate semi-circular patterns on planar metallic surfaces to create a master mold. The micromilled pattern is then transferred to polydimethylsiloxane (PDMS) through a two-step reverse molding process. Using these semi-circular PDMS channels, circular cross-sectioned microchannels are created by aligning and adhering two channels face-to-face. Straight and serpentine-shaped microchannels were fabricated, and the channel geometry and precision of the metallic master and PDMS molds were assessed through scanning electron microscopy and non-contact profilometry. Channel functionality was tested by perfusion of liquid through the channels. This work demonstrates that micromachining enabled soft lithography is capable of fabricating non-rectangular cross-section channels for microfluidic applications. We believe that this approach will be important for many fields from biomimetics and vascular engineering to microfabrication and microreactor technologies.  相似文献   

12.
We show a straightforward, flexible synergistic approach that combines microfluidics, electrochemistry, and a general immobilization strategy to activate regions of a substrate selectively for the precise immobilization of ligands and cells in patterns for a variety of cell-based assays and cell migration and cell adhesion studies. We develop microfluidic microchips to control the delivery of electrolyte solution to select regions of an electroactive hydroquinone SAM. Once an electrical potential is applied to the substrate, only the hydroquinone exposed to electrolyte solution within the microfluidic channels oxidizes to the corresponding quinone. The quinone form can then react chemoselectively with oxyamine-tethered ligands to pattern the surface. Therefore, this microfluidic/electrochemistry strategy selectively activates the surface for ligand patterning that exactly matches the channel design of the microfluidic channel. We demonstrate the ease of this system by first quantitatively characterizing the electrochemical activation and immobilization of ligands on the surface. Second, we immobilize a fluorescent dye to show the fidelity of the methodology, and third, we show the immobilization of biospecific cell adhesive peptide ligands to pattern cells. This is the first report that combines microfluidics/electrochemistry and a general electroactive immobilization strategy to pattern ligands and cells. We believe that this strategy will be of broad utility for applications ranging from fundamental studies of cell behavior to patterning molecules on a variety of materials for molecular electronic devices.  相似文献   

13.
J Wu  G Zheng  LM Lee 《Lab on a chip》2012,12(19):3566-3575
Microfluidic devices have undergone rapid development in recent years and provide a lab-on-a-chip solution for many biomedical and chemical applications. Optical imaging techniques are essential in microfluidics for observing and extracting information from biological or chemical samples. Traditionally, imaging in microfluidics is achieved by bench-top conventional microscopes or other bulky imaging systems. More recently, many novel compact microscopic techniques have been developed to provide a low-cost and portable solution. In this review, we provide an overview of optical imaging techniques used in microfluidics followed with their applications. We first discuss bulky imaging systems including microscopes and interferometer-based techniques, then we focus on compact imaging systems that can be better integrated with microfluidic devices, including digital in-line holography and scanning-based imaging techniques. The applications in biomedicine or chemistry are also discussed along with the specific imaging techniques.  相似文献   

14.
Basic research on confined foams now points to an interesting application, a kind of microfluidics which deals with the manipulation of closely packed droplets or bubbles flowing in channels. In such systems, the minimisation of interfacial energy leads to self-organised ordering which is tightly coupled to the channel geometry, hence providing efficient means of performing controlled topological operations on droplet and bubbles structures. We have called this discrete microfluidics, and have begun to explore its possibilities and principles. Apart from the fact that such systems provide powerful tools to study the flow of foams and emulsions on the scale of a few bubbles or droplets, they also carry the promise of versatile applications for Lab-on-a-Chip technologies. In these, discrete gas or liquid samples can be generated, processed, stored and analysed within a single handheld chip. Previous work on foams and emulsions in confined geometries provides a basis for this, and is being extended progressively by new experiments and appropriate dynamic models, such as the 2d Viscous Froth Model. The result should be a practical "design kit" for more complex networks to efficiently process discrete gas and fluid samples.  相似文献   

15.
Droplet microfluidics for the study of artificial cells   总被引:1,自引:0,他引:1  
In this review, we describe recent advances in droplet-based microfluidics technology that can be applied in studies of artificial cells. Artificial cells are simplified models of living cells and provide valuable model platforms designed to reveal the functions of biological systems. The study of artificial cells is promoted by microfluidics technologies, which provide control over tiny volumes of solutions during quantitative chemical experiments and other manipulations. Here, we focus on current and future trends in droplet microfluidics and their applications in studies of artificial cells.  相似文献   

16.
Commercialization of microfluidic point-of-care diagnostic devices   总被引:1,自引:0,他引:1  
Chin CD  Linder V  Sia SK 《Lab on a chip》2012,12(12):2118-2134
A large part of the excitement behind microfluidics is in its potential for producing practical devices, but surprisingly few lab-on-a-chip based technologies have been successfully introduced into the market. Here, we review current work in commercializing microfluidic technologies, with a focus on point-of-care diagnostics applications. We will also identify challenges to commercialization, including lessons drawn from our experience in Claros Diagnostics. Moving forward, we discuss the need to strike a balance between achieving real-world impact with integrated devices versus design of novel single microfluidic components.  相似文献   

17.
L Pang  HM Chen  LM Freeman  Y Fainman 《Lab on a chip》2012,12(19):3543-3551
Optofluidics integrates the fields of photonics and microfluidics, providing new freedom to both fields and permitting the realization of optical and fluidic property manipulations at the chip scale. Optofluidics was formed only after many breakthroughs in microfluidics, as understanding of fluid behaviour at the micron level enabled researchers to combine the advantages of optics and fluids. This review describes the progress of optofluidics from a photonics perspective, highlighting various optofluidic aspects ranging from the device's property manipulation to an interactive integration between optics and fluids. First, we describe photonic elements based on the functionalities that enable fluid manipulation. We then discuss the applications of optofluidic biodetection with an emphasis on nanosensing. Next, we discuss the progress of optofluidic lenses with an emphasis on its various architectures, and finally we conceptualize on where the field may lead.  相似文献   

18.
《中国化学快报》2022,33(8):3650-3656
Manipulating the fluid transport in the microscale pores and channels is playing a paramount role in the realization of the versatile functions of microfluidics. In recent years, using light to control the fluid behavior in the microchannels/pores has attracted many researchers’ attention due to the advantages of light such as non-contact stimulation, tunable excitation, high spatial and temporal resolution. With efforts, great achievements and progresses have been achieved for photochemical effect driven microscale flow control, including fluid pumping, flow rate control, and fluid mixing, etc. In this review, we discuss the responsive mechanisms of photochemical effect driven fluid behavior control at the microscale. We also give a comprehensive review on the latest research progresses in photochemical effect controlled microfluid behaviors. Besides, prospective opportunities for the future development of light control of microscale flow are provided to attract scientific interest for the fast development and applications of various microchannel/pore systems.  相似文献   

19.
DeVoe DL  Lee CS 《Electrophoresis》2006,27(18):3559-3568
The field of microfluidics continues to offer great promise as an enabling technology for advanced analytical tools. For biomolecular analysis, there is often a critical need to couple on-chip microfluidic sample manipulation with back-end MS. Though interfacing microfluidics to MS has been most often reported through the use of direct ESI-MS, there are compelling reasons for coupling microfluidics to MALDI-MS as an alternative to ESI-MS for both online and offline analysis. The intent of this review is to provide a summary of recent developments in the integration of microfluidic systems with MALDI-MS, with an emphasis on applications in proteomics. Key points are summarized, followed by a review of relevant technologies and a discussion of outlook for the field.  相似文献   

20.
The ability to fabricate microfluidic systems with complex structures and with compatible dimensions between the microfluidics and biological cells have attracted significant attention in the development of microchips for analyzing the biophysical and biochemical functions of cells. Just as cell-based microfluidics have become a versatile tool for biosensing, diagnostics, drug screening and biological research, detector modules for cell-based microfluidics have also undergone major development over the past decade. This review focuses on detection methods commonly used in cell-based microfluidic systems, and provides a general survey and an in-depth look at recent developments in optical and electrochemical detection methods for microfluidic applications for biological systems, particularly cell analysis. Selected examples are used to illustrate applications of these detection systems and their advantages and weaknesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号