首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physicochemical modification of Metal-Organic Frameworks (MOFs) is a current challenge in the search to improve their performance in different technological applications. In this work we analyze the post-synthetic modification of ZIF-8 crystals and films through a simple and clean treatment that involves the exposure to a UV lamp under environmental conditions. It is demonstrated that a short treatment alters the MOF structure and chemistry, providing a modified ZIF-8 due to partial disconnections of its structure which increase the amount of terminal surface species such as Zn−OH and −C=N-H, but without compromising the overall MOF structure, specific surface area or thermal stability. Additionally, it leads to changes in several properties of the ZIF-8, such as its capacity to accumulate charge through pseudocapacitive processes, its interaction with nitric oxide and its light absorption behavior. This strategy of modifying ZIF-8 without the use of chemicals through a gentle disconnection of its own structure could open new perspectives of post-functionalization of crystals and films of ZIF-8 to be used in a wide range of applications.  相似文献   

2.
Chemical modification of metal organic framework (MOF) nanocrystal colloids was used to endow them with chemical affinity for gold substrates. Modified nanocrystals were then used as building blocks for rapid and selective self-assembly of porous films. Cysteamine (Cys, 2-aminoetanethiol) was chosen as both chemical modulator and functionalizing agent of Zeolite Imidazolate Framework-8 (ZIF-8) MOF nanocrystals. Important parameters such as the impact of the modulator on the range of nanocrystals stability, size, polydispersity, morphology, and crystalline structure were assessed via both, small and wide angle x-ray scattering (SAXS and WAXS). Cysteamine modified ZIF-8 nanocrystals were assembled into films over conductive Au substrates and film growth was followed in-situ with Quartz Crystal Microbalance (QCM). Thiol moieties exposed out of the ZIF-8 surface after cysteamine modification, results in the formation of thiol bonds with Au conductive substrates as shown via Cyclic Voltammetry experiments. The strategy here presented allows for the synthesis of pre-designed building blocks for MOF films on metal surfaces.  相似文献   

3.
We report the rapid amorphization of the prototypical substituted zeolitic imidazolate framework, ZIF-8, by ball-milling. The resultant amorphous ZIF-8 (a(m)ZIF-8) possesses a continuous random network (CRN) topology with a higher density and a lower porosity than its crystalline counterpart. A decrease in thermal stability upon amorphization is also evident.  相似文献   

4.
Zeolite imidazole frameworks (ZIF-8) are a group of metal–organic frameworks (MOFs) that harbor application potential due to their unique high porosity and other physicochemical properties. However, the small cavities, unstable dispersion, and the lack of surface functional groups hinder the practical application of ZIF-8. In this study, we aimed to develop a ZIF-8-based multifaceted platform with hollow structure and abundant functional groups via a simple one-pot method. We synthesized the ZIF-8 with thiol functionalization (ZSH), while 2-mercaptoimidazole was served as both etching agent and functional counterpart. The hollow morphology and the thiol-groups modification were validated by scanning electron microscopy, transmission electron microscopy with energy-disperse X-ray mapping and X-ray photoelectron spectroscopy. The interparticle structure was estimated by Brunauer–Emmmett–Teller and ultraviolet–visible spectroscopy. The hollow architecture, colloidal stable, and thiol-abundant surface endow ZSHs exploiting the antioxidant and anti-inflammatory ability than pristine ZIF-8 toward a broad scale of morphological change with high functionalization degree. Moreover, ZSHs can specifically encapsulate gold nanoparticles in large quantities for further applications. Finally, ZSHs possess good biocompatibility in human cells and in vivo zebrafish model and could potentially protect human cells against oxidative stress. This concept valuably elucidated the new era for functionalized ZIF-8 to apply as the next generation of multifunctional biomaterials.  相似文献   

5.
Metal–organic framework (MOF) glass is an easy to process and self-supported amorphous material that is suitable for fabricating gas separation membranes. However, MOF glasses, such as ZIF-62 and ZIF-4 have low porosity, which makes it difficult to obtain membranes with high permeance. Here, a self-supported MOF crystal–glass composite (CGC) membrane was prepared by melt quenching a mixture of ZIF-62 as the membrane matrix and ZIF-8 as the filler. The conversion of ZIF-62 from crystal to glass and the simultaneous partial melting of ZIF-8 facilitated by the melt state of ZIF-62 make the CGC membrane monolithic, eliminating non-selective grain boundaries and improving selectivity. The thickness of CGC membrane can be adjusted to fabricate a membrane without the need of a support substrate. CGC membranes exhibit a C2H6 permeance of 41 569 gas permeation units (GPU) and a C2H6/C2H4 selectivity of 7.16. The CGC membrane has abundant pores from the glassy state of ZIF-62 and the crystalline ZIF-8, which enables high gas permeance. ZIF-8 has preferential adsorption for C2H6 and promotes C2H6 transport in the membrane, and thus the GCG membrane exhibits ultrahigh C2H6 permeance and good C2H6/C2H4 selectivity.  相似文献   

6.
《中国化学快报》2021,32(10):3123-3127
Metal–organic frameworks (MOFs) have a regular porous structure and high porosity, which make them ideal electrode materials for supercapacitors. However, their capacitance performance is greatly limited by their poor conductivity. In this study, a multi-component hierarchical structure was obtained by growing NiCoFeLDH on the surface of ZIF-67, which increased the electron transfer between the MOF particles and greatly improved the capacitance of ZIF-67. The formation mechanism of the multi-component layered hollow structure indicated that the hydrolysis acidity of metal ions and the coordination ability with ligands were the key factors for forming nanosheets and hollow structures. By controlling the type and valence state of the doped metals and the reaction time, the morphology transformation of MOF composites can be effectively controlled. Electrochemical studies showed that the specific capacitance of hollow NiCoFeLDH@ZIF-67 composite is 1202.08 F/g (0.5 A/g). In addition, aqueous devices were assembled and carefully tested. This scheme is crucial for the design of MOF-based materials used in supercapacitor devices and serves as a guide for the design of MOF-based composites.  相似文献   

7.
CgL1 laccase from Corynebacterium glutamicum was encapsulated into the metal-organic framework (MOF) ZIF-8 which was synthesized in a rapid enzyme friendly aqueous synthesis, the fastest in situ encapsulation of laccases reported to date. The obtained enzyme/MOF, i. e. laccase@ZIF-8 composite showed enhanced thermal (up to 70 °C) and chemical (N,N-dimethylformamide) stability, resulting in a stable heterogenous catalyst, suitable for high temperature reactions in organic solvents. Furthermore, the defined structure of ZIF-8 produced a size selective substrate specificity, so that substrates larger than the pore size were not accepted. Thereby, 2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) was used to verify that the enzyme is immobilized inside the MOF versus the outside surface. The enzyme@MOF composite was analyzed by atomic absorption spectroscopy (ASS) to precisely determine the enzyme loading to 2.1 wt%.  相似文献   

8.
Polymers with excellent comprehensive performance toward enhanced stability and mechanical strength are attractive for matrix loading of tunable porous and inherently brittle metal?organic frameworks (MOFs). Polyethersulfone (PES) with high mechanical strength (elastic modulus = ~2.6 GPa) is one of the best polymeric materials widely applied in gas and liquid separations but hindered by its ability to adhere to MOFs surface. The combination of the interface width, porosity, atomic density, and hydrogen bonding number and strength strongly influences MOFs/PES compatibility. ZIF-8 is one of the most frequently investigated MOFs, and exhibits excellent interface compatibility with PES, which is confirmed by both computational and experimental analyses. The desired porosity and adsorption properties of ZIF-8 are retained in ZIF-8/PES composites. This study sheds light on the theoretical understanding and characterization of hybrid material systems with diverse differences between brittle MOFs and stiff polymers.  相似文献   

9.
Thin polymer films that prevent the adhesion of bacteria are of interest as coatings for the development of infection‐resistant biomaterials. This study investigates the influence of grafting density and film thickness on the adhesion of Staphylococcus epidermidis to poly(poly(ethylene glycol)methacrylate) (PPEGMA) and poly(2‐hydroxyethyl methacrylate) (PHEMA) brushes prepared via surface‐initiated atom transfer radical polymerization (SI‐ATRP). These brushes are compared with poly(ethylene glycol) (PEG) brushes, which are obtained by grafting PEG onto an epoxide‐modified substrate. Except for very low grafting densities (ρ = 1%), crystal violet staining experiments show that the PHEMA and PPEGMA brushes are equally effective as the PEG‐modified surfaces in preventing S. epidermis adhesion and do not reveal any significant variations as a function of film thickness or grafting density. These results indicate that brushes generated by SI‐ATRP are an attractive alternative to grafted‐onto PEG films for the preparation of surface coatings that resist bacterial adhesion.

  相似文献   


10.
We present the synthesis of reactive polymer brushes prepared by surface reversible addition–fragmentation chain transfer polymerization of pentafluorophenyl acrylate. The reactive ester moieties can be used to functionalize the polymer brush film with virtually any functionality by simple post‐polymerization modification with amines. Dithiobenzoic acid benzyl‐(4‐ethyltrimethoxylsilyl) ester was used as the surface chain transfer agent (S‐CTA) and the anchoring group onto the silicon substrates. Reactive polymer brushes with adjustable molecular weight, high grafting density, and conformal coverage through the grafting‐from approach were obtained. Subsequently, the reactive polymer brushes were converted with amino‐spiropyrans resulting in reversible light‐responsive polymer brush films. The wetting behavior could be altered by irradiation with ultraviolet (UV) or visible light. Furthermore, a patterned surface of polymer brushes was obtained using a lithography technique. UV irradiation of the S‐CTA‐modified substrates leads to a selective degradation of S‐CTA in the exposed areas and gives patterned activated polymer brushes after a subsequent RAFT polymerization step. Conversion of the patterned polymer brushes with 5‐((2‐aminoethyl)amino)naphthalene‐1‐sulfonic acid resulted in patterned fluorescent polymer brush films. The utilization of reactive polymer brushes offers an easy approach in the fabrication of highly functional brushes, even for functionalities whose introduction is limited by other strategies. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
We report a facile approach to preparing binary mixed polymer brushes and free-standing films by combining the layer-by-layer and surface-initiated polymerization (LbL-SIP) techniques. Specifically, the grafting of mixed polymer brushes of poly(n-isopropylacrylamide) and polystyrene (pNIPAM-pSt) onto LbL-macroinitiator-modified planar substrates is described. Atom transfer radical polymerization (ATRP) and free radical polymerization (FRP) techniques were employed for the syntheses of pNIPAM and pSt, respectively, yielding pNIPAM-pSt mixed polymer brushes. The composition of the two polymers was controlled by varying the number of macroinitiator layers deposited on the substrate (i.e., LbL layers = 4, 8, 12, 16, and 20); consequently, mixed brushes of different thicknesses and composition ratios were obtained. Moreover, the switching behavior of the LbL-mixed brush films as a function of solvent and temperature was demonstrated and evaluated by water contact angle and atomic force microscopy (AFM) experiments. It was found that both the solvent and temperature stimuli responses were a function of the mixed brush composition and thickness ratio where the dominant component played a larger role in the response behavior. Furthermore, the ability to obtain free-standing films was exploited. The LbL technique provided the macroinitiator density variation necessary for the preparation of stable free-standing mixed brush films. Specifically, the free-standing films exhibited the rigidity to withstand changes in the solvent and temperature environment and at the same time were flexible enough to respond accordingly to external stimuli.  相似文献   

12.
Arrays of ultrasmall and uniform carbon nanodots (CDs) are of pronounced interest for applications in optical devices. Herein, we describe a low-temperature calcination approach with rather inexpensive reactants. After glucose molecules had been loaded into the pores of metal–organic frameworks (MOFs), well-defined CD arrays were produced by heating to 200 °C. The size and spacing of the CDs could be controlled by the choice of templating MOF: HKUST-1, ZIF-8, or MIL-101. The sizes of the obtained CDs were approximately 1.5, 2.0, and 3.2 nm, which are close to the corresponding MOF pores sizes. The CD arrays exhibited interesting photophysical properties, including photoluminescence with tunable emission and pronounced nonlinear optical (NLO) effects. The NLO properties of the obtained CD arrays were significantly different from those of a CD suspension, thus indicating the existence of collective phenomena.  相似文献   

13.
Zn is a promising anode for aqueous energy storage owing to it intrinsic superior properties such as large capacity, abundant reserves, low potential and safety. But, the growth of dendrites during charge and discharge leads to a decrease in reversibility. In addition, further development of zinc-ion hybrid capacitors (ZICs) is seriously challenging because of the lack of an exceptional cathode. Herein, we use ZIF-8 annealed at 500 °C (annealed ZIF-8) as a host material for stable and dendrite-free Zn anodes. Utilization of annealed ZIF-8 results in dendrite-free Zn deposition and stripping as a result of its porous construction, which contains trace Zn. Furthermore, we firstly proposed innovative N,O dual-doped carbon which was designed by the derived ZIF-8 (ZIF-8 derived C) as cathode for high-energy and power-density ZICs. The new ZIC assembled by Zn@annealed ZIF-8 anode and ZIF-8 derived C cathode provides a capacity of 135.5 mAh g−1 and an energy density of 108.4 Wh kg−1 with a power density of 800 W kg−1 at 1.0 A g−1. In addition, it shows outstanding cycling stability of 91% capacity retention after 6000 cycles at 5.0 A g−1. Moreover, the solid-state ZICs can drive LEDs and smart watches. This ZIC holds promise for the practical application of supercapacitors.  相似文献   

14.
In this work, bioadhesive behavior of plasma proteins and blood cells from umbilical cord blood (UCB) onto zwitterionic poly(sulfobetaine methacrylate) (polySBMA) polymer brushes was studied. The surface coverage of polySBMA brushes on a hydrophobic polystyrene (PS) well plate with surface grafting weights ranging from 0.02 mg/cm(2) to 0.69 mg/cm(2) can be effectively controlled using the ozone pretreatment and thermal-induced radical graft-polymerization. The chemical composition, grafting structure, surface hydrophilicity, and hydration capability of prepared polySBMA brushes were determined to illustrate the correlations between grafting properties and blood compatibility of zwitterionic-grafted surfaces in contact with human UCB. The protein adsorption of fibrinogen in single-protein solutions and at complex medium of 100% UCB plasma onto different polySBMA brushes with different grafting coverage was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. The grafting density of the zwitterionic brushes greatly affects the PS surface, thus controlling the adsorption of fibrinogen, the adhesion of platelets, and the preservation of hematopoietic stem and progenitor cells (HSPCs) in UCB. The results showed that PS surfaces grafted with polySBMA brushes possess controllable hydration properties through the binding of water molecules, regulating the bioadhesive and bioinert characteristics of plasma proteins and blood platelets in UCB. Interestingly, it was found that the polySBMA brushes with an optimized grafting weight of approximately 0.1 mg/cm(2) at physiologic temperatures show significant hydrated chain flexibility and balanced hydrophilicity to provide the best preservation capacity for HSPCs stored in 100% UCB solution for 2 weeks. This work suggests that, through controlling grafting structures, the hemocompatible nature of grafted zwitterionic polymer brushes makes them well suited to the molecular design of regulated bioadhesive interfaces for use in the preservation of HSPCs from human UCB.  相似文献   

15.
Metal–organic frameworks (MOFs) are made up of metal centers and organic binders with larger surface area and distinct pore structures. Particularly significant advancement in MOF membranes has been achieved in three different directions: preparation of MOF membranes with larger surface area, improving the membrane performance by surface modification, and its usage with added features. However, its significance has not been completely known and concluded yet. MOF membranes are used in a variety of membrane-based separation like gas permeation, nanofiltration, pervaporation, membrane distillation, etc. This research aims to synthesize MOFs (ZIF-8 and ZIF-67) and MOF membranes (ZIF-8/PVDF and ZIF-67/PVDF) and used them in the pervaporative separation of the methanol/water mixture. MOFs and MOF membranes were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetry analysis. Methanol/water mixtures were be used to study the performance of the prepared membranes. A study on the process parameters such as temperature (40, 45, 50, and 55°C), feed pressure (4, 8, 12, and 16 psi), and feed composition (10%, 20%, 30%, and 40% of water) was carried out to examine the effect of each process parameters for pure membrane. In contrast, Taguchi screening design was used to screen the most influential process variable. The optimized conditions based on Taguchi screening method were 55°C, 12 psi, and 40 %vol of water in feed. The obtained total flux of 425 L/m2h was observed for M3 membrane. As feed temperature increased, the total flux of all three membranes was increased.  相似文献   

16.
The accuracy of the molecular weights Mn and polydispersities of polymer brushes, determined by stretching the grafted chains using atomic force microscopy (AFM) and measuring the contour length distribution, was evaluated as a function of grafting density sigma. Poly(N,N-dimethylacrylamide) brushes were prepared by surface initiated atom transfer radical polymerization on latex particles with sigma ranging between 0.17 and 0.0059 chains/nm2 and constant Mn. The polymer, which could be cleaved from the grafting surface by hydrolysis and characterized by gel permeation chromatography (GPC), had a Mn of 30,600 and polydispersity (PDI) of 1.35. The Mn determined by the AFM technique for the higher density brushes agreed quite well with the GPC results but was significantly underestimated for the lower sigma. At high grafting density in good solvent, the extended structure of the brush increases the probability of forming segment-tip contacts located at the chain end. When the distance between chains approached twice the radius of gyration of the polymer, the transition from brush to mushroom structure presumably enabled the formation of a larger number of segment-tip contacts having separations smaller than the contour length, which explains the discrepancy between the two methods at low sigma. The PDI was typically higher than that obtained by GPC, suggesting that sampling of chains with above average contour length occurs at a frequency that is greater than their spatial distribution.  相似文献   

17.
ABSTRACT

Drug delivery using metal-organic frameworks (MOF) has elicited interest in their biocompatibility; however, few studies have been conducted on their stability in common buffers, cell media, and blood proteins. In particular, the use of ZIF-8, a MOF interconnected by Zn and methylimidazole, has been frequently employed. In this study, we tested single crystals of ZIF-8 with common laboratory buffers, cell media, and serum, and noted several issues. Buffers containing phosphate and bicarbonate alter the appearance and composition of ZIF-8; however, these buffers do not appear to cause cargo to leak out even when the ZIF-8 itself is displaced by phosphates. On the other hand, serum dissolves ZIF-8, causing premature cargo release. Our results show that ZIF-8 undergoes surface chemistry changes that may affect the interpretation of cellular uptake and cargo release data. On the other hand, it provides a rational explanation as to how ZIF-8 neatly dissolves in vivo.  相似文献   

18.
ZIF-8 is a zeolitic imidazole-based metal-organic framework with large cavities interconnected by narrow windows. Because the small size of the windows, it allows in principle for molecular sieving of gases such as H(2) and CH(4). However, the unexpected adsorption of large molecules on ZIF-8 suggests the existence of structural flexibility. ZIF-8 flexibility is explored in this work combining different experimental techniques with molecular simulation. We show that the ZIF-8 structure is modified by gas adsorption uptake in the same way as it is at a very high pressure (i.e., 14,700 bar) due to a swing effect in the imidazolate linkers, giving access to the porosity. Tuning the flexibility, and so the opening of the small windows, has a further impact on the design of advanced molecular sieving membrane materials for gas separation, adjusting the access of fluids to the porous network.  相似文献   

19.
Embedding an enzyme within a MOF as exoskeleton (enzyme@MOF) offers new opportunities to improve the inherent fragile nature of the enzyme, but also to impart novel biofunctionality to the MOF. Despite the remarkable stability achieved for MOF-embedded enzymes, embedding patterns and conversion of the enzymatic biofunctionality after entrapment by a MOF have only received limited attention. Herein, we reveal how embedding patterns affect the bioactivity of an enzyme encapsulated in ZIF-8. The enzyme@MOF can maintain high activity when the encapsulation process is driven by rapid enzyme-triggered nucleation of ZIF-8. When the encapsulation is driven by slow coprecipitation and the enzymes are not involved in the nucleation of ZIF-8, enzyme@MOF tends to be inactive owing to unfolding and competing coordination caused by the ligand, 2-methyl imidazole. These two embedding patterns can easily be controlled by chemical modification of the amino acids of the enzymes, modulating their biofunctionality.  相似文献   

20.
Samples of molecular polyimide brushes with poly(methyl methacrylate) side chains with substantially different grafting densities and lengths of side chains are obtained by the atom-transfer radical polymerization of methyl methacrylate using samples of polyimide multicenter macroinitiators with different contents of initiation groups. Strong homogeneous films suitable for use as diffusion membranes for pervaporation separations of liquid mixtures are cast from solutions of polyimide brushes in dimethylformamide. Investigations are performed for films of polyimide brushes with loosely grafted short side chains or densely grafted long side chains as well as for films of a polyimide identical in its chemical structure to the backbone of polyimide brushes. It is shown that all film membranes sorb water moderately and do not sorb isopropanol. For membranes made of the polyimide and the loosely grafted brush, which is close to the polyimide in its properties, the active sorption of acetonitrile is demonstrated. It is found that all membranes exhibit high selectivities for water upon pervaporation of water–isopropanol mixtures. In addition, membranes made of the brush with densely grafted side chains show high productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号