首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single Fe atoms dispersed on hierarchically structured porous carbon (SA‐Fe‐HPC) frameworks are prepared by pyrolysis of unsubstituted phthalocyanine/iron phthalocyanine complexes confined within micropores of the porous carbon support. The single‐atom Fe catalysts have a well‐defined atomic dispersion of Fe atoms coordinated by N ligands on the 3D hierarchically porous carbon support. These SA‐Fe‐HPC catalysts are comparable to the commercial Pt/C electrode even in acidic electrolytes for oxygen reduction reaction (ORR) in terms of the ORR activity (E1/2=0.81 V), but have better long‐term electrochemical stability (7 mV negative shift after 3000 potential cycles) and fuel selectivity. In alkaline media, the SA‐Fe‐HPC catalysts outperform the commercial Pt/C electrode in ORR activity (E1/2=0.89 V), fuel selectivity, and long‐term stability (1 mV negative shift after 3000 potential cycles). Thus, these nSA‐Fe‐HPCs are promising non‐platinum‐group metal ORR catalysts for fuel‐cell technologies.  相似文献   

2.
The development of nonprecious metal-based electrocatalysts with remarkable catalytic activity and long-cycling lifespan toward oxygen reduction reaction (ORR) and evolution reaction (OER) is especially important for rechargeable zinc–air batteries (ZABs). Herein, monodispersed Co9S8 nanoparticles embedded in nitrogen-doped hierarchically porous hollow carbon spheres (Co9S8 NPs/NHCS) are synthesized through a template-assisted strategy followed by a co-assembly, thermal annealing, and sulfurization process. Benefiting from larger specific surface area, hierarchically porous hollow structure, and carbon nanotubes self-growth, the obtained Co9S8 NPs/NHCS-0.5 electrocatalyst exhibits decent performance for ORR (E1/2=0.85 V) and OER (E10=1.55 V). A rechargeable ZAB assembled using the Co9S8 NPs/NHCS-0.5 as air cathode delivers a maximum power density of 116 mW cm−2, high open circuit voltage of 1.47 V, and good durability (no obvious voltage decay after 1200 cycles (200 hours)). Such a hierarchically porous hollow structure of Co9S8 NPs/NHCS-0.5 provides a confined space shell and an interconnected hollow core to achieve outstanding bifunctional catalytic activity and cycling stability, which surpass the benchmark Pt/C-RuO2.  相似文献   

3.
Two-dimensional (2D) porous carbon nanosheets (2DPCs) have attracted great attention for their good porosity and long-distance conductivity. Factors such as templates, precursors, and carbonization–activation methods, directly determine their performance. However, rational design and preparation of porous carbon materials with controlled 2D morphology and heteroatom dopants remains a challenge. Therefore, an ionic polyimide with both sp2- and sp3-hybridized nitrogen atoms was prepared as a precursor for fabricating N-doped hexagonal porous carbon nanosheets through a hard-template approach. Because of the large surface area and efficient charge-mass transport, the resulting activated 2D porous carbon nanosheets (2DPCs-a) displayed promising electrocatalytic properties for oxygen reduction reaction (ORR) in alkaline and acidic media, such as ultralow half-wave potential (0.83 vs. 0.84 V of Pt/C) and superior limiting current density (5.42 vs. 5.14 mA cm−2 of Pt/C). As air cathodes in Zn–air batteries, the as-developed 2DPCs-a exhibited long stability and high capacity (up to 614 mA h g−1), which are both higher than those of commercial Pt/C. This work provides a convenient method for controllable and scalable 2DPCs fabrication as well as new opportunities to develop high-efficiency electrocatalysts for ORR and Zn–air batteries.  相似文献   

4.
将双氰胺、蔗糖与酞菁铁(钴)的混合物通过简单热解法,制备出Co/C-N、Fe/C-N和Fe-Co/C-N纳米复合物。随后利用热还原法,将少量铂沉积于Co/C-N上得到片状碳负载的Co-Pt纳米颗粒Co-Pt/C-N。对样品进行了详细表征,并研究了其在全域pH范围内(酸性、中性与碱性溶液)中的氧还原反应(ORR)活性。结果表明,Co/C-N具有比Fe/C-N和Fe-Co/C-N更高的ORR起始电位和半波电位,并且在碱性和中性溶液中,Co/C-N表现出比Pt/C更强的ORR电活性;在酸性溶液中,铂负载量(质量分数)8.1%的Co-Pt/C-N表现出与Pt/C相近的ORR起始与半波电位。催化剂优异的电活性主要归因于片状碳形成的三维结构、金属纳米颗粒的均匀分布以及丰富的吡啶氮。  相似文献   

5.
The precise control of electronic configurations of catalytic sites via molecular engineering is significantly desirable for boosting electrocatalytic activity. We reported a new-type composite electrocatalyst with cobalt phthalocyanine supported on N-doped MXene nanosheets (N-MXene/CoPc) through a self-assembly process. Beneficial from the joint action of N sites participation and axial coordination, N-MXene/CoPc exhibits a high ORR activity with positive onset potential (Eonset=0.98 V vs. RHE) and half-wave potential (E1/2=0.863 V), which is superior over the pristine CoPc (E1/2=0.72 V) and the composite with undoped MXene as support (MXene/CoPc, E1/2=0.771 V). Additionally, N-MXene/CoPc exhibits an excellent durability with only 8.5 % attenuation after 25000 s of continuous i-t test, while a more obvious decay 18.6 % for 20 wt.% Pt/C. This work not merely reported a robust ORR catalyst, but more provides a reasonable design strategy for nonnoble-metal catalysts through catalyst-support interactions.  相似文献   

6.
Oxygen reduction reaction (ORR) is of critical significance in the advancement of fuel cells and zinc-air batteries. The iron-nitrogen (Fe−Nx) sites exhibited exceptional reactivity towards ORR. However, the task of designing and controlling the local structure of Fe species for high ORR activity and stability remains a challenge. Herein, we have achieved successful immobilization of Fe species onto the highly curved surface of S, N co-doped carbonaceous nanosprings (denoted as FeNS/Fe3C@CNS). The induction of this twisted configuration within FeNS/Fe3C@CNS arose from the assembly of chiral templates. For electrocatalytic ORR tests, FeNS/Fe3C@CNS exhibits a half-wave potential (E1/2) of 0.91 V in alkaline medium and a E1/2 of 0.78 V in acidic medium. The Fe single atoms and Fe3C nanoparticles are coexistent and play as active centers within FeNS/Fe3C@CNS. The highly curved surface, coupled with S substitution in the coordination layer, served to reduce the energy barrier for ORR, thereby enhancing the intrinsic catalytic activity of the Fe single-atom sites. We also assembled a wearable flexible Zn-air battery using FeNS/Fe3C@CNS as electrocatalysts. This work provides new insights into the construction of highly curved surfaces within carbon materials, offering high electrocatalytic efficacy and remarkable performance for flexible energy conversion devices.  相似文献   

7.
Fuel cells have attracted increasing attention due to their low cost, high energy density, low environmental pollution, and abundant raw materials. Oxygen reduction reaction (ORR) is a core technology of fuel cells, and the development of new electrocatalysts with high ORR performance is highly desirable. Herein, we synthesize a series of B, N co-doped hierarchical porous carbons using a soft template method with the integration of self-assembly, calcination and etching. The obtained materials exhibit hierarchical porous structures, controllable pore distribution, partial graphite structures, and B, N co-doping. They can function as the cost-effective and metal-free electrocatalysts, facilitating the diffusion of electrolyte ions and the improvement of ORR performance. Especially, the B, N co-doped porous carbon with the B-to-N molar ratio of 5 (BNC-5) displays a high ORR activity with a half-wave potential (E1/2) of 0.73 V, an onset potential (Eonset) of 0.94 V, and a high limiting current density (JL) of 5.98 mA cm−2, superior to the N-doped C (NC) and BNC-1 (the B-to-N molar ratio=1), BNC-3 (the B-to-N molar ratio=3) and BNC-7 (the B-to-N molar ratio=7) under the identical conditions. Moreover, the BNC-5 exhibits good cycling stability after 5000 cyclic voltammetry (CV) cycles and excellent tolerance toward even 3 M methanol. This research provides a new approach for the facile synthesis of dual element-doped carbon electrocatalysts with high ORR performance.  相似文献   

8.
Fe‐Co‐N‐C electrocatalysts have proven superior to their counterparts (e.g. Fe‐N‐C or Co‐N‐C) for the oxygen reduction reaction (ORR). Herein, we report on a unique strategy to prepare Fe‐Co‐N‐C?x (x refers to the pyrolysis temperature) electrocatalysts which involves anion‐exchange of [Fe(CN)6]3? into a cationic CoII‐based metal‐organic framework precursor prior to heat treatment. Fe‐Co‐N‐C‐900 exhibits an optimal ORR catalytic performance in an alkaline electrolyte with an onset potential (Eonset: 0.97 V) and half‐wave potential (E1/2: 0.86 V) comparable to that of commercial Pt/C (Eonset=1.02 V; E1/2=0.88 V), which outperforms the corresponding Co‐N‐C‐900 sample (Eonset=0.92 V; E1/2=0.84 V) derived from the same MOF precursor without anion‐exchange modification. This is the first example of Fe‐Co‐N‐C electrocatalysts fabricated from a cationic CoII‐based MOF precursor that dopes the Fe element via anion‐exchange, and our current work provides a new entrance towards MOF‐derived transition‐metal (e.g. Fe or Co) and nitrogen‐codoped carbon electrocatalysts with excellent ORR activity.  相似文献   

9.
The development of effective and affordable electrocatalysts for the oxygen reduction reaction (ORR) is critical for the renewable-energy technologies. Here, we present a new manganese iron oxide (MnFeO2) as a cost-effective material for the ORR with Pt-like electrochemical properties. Pyrolysis of hybrid agar hydrogel on NaCl nanocrystals furnishes a unique structure in which the active MnFeO2 particles are uniformly immobilized in the nitrogen-doped porous carbon aerogels (MnFeO2/NPC). Nitrogen-doped carbon is introduced to construct porous mass-transfer channels and reduce self-aggregation of the MnFeO2 particles. It is found that the formation of the MnFeO2 phase greatly depends on the pyrolysis temperature. Benefiting from the synergy of MnFeO2 and NPC, the MnFeO2/NPC can actually be as good as the Pt/C catalyst for the ORR, with an onset-potential of 0.98 V and a half-wave potential of 0.86 V, combined with demonstrating a superior stability and tolerance to methanol.  相似文献   

10.
To reduce the over-dependence on Pt, Pd-based catalysts have become one of the most effective candidates for oxygen reduction reaction (ORR). In order to further accelerate the ORR kinetics and strengthen the catalytic performance of Pd catalysts, component optimization and morphology design have been adopted. Although great progress has been made, it is still difficult to obtain porous ultrathin nanosheets with excellent performance by a simple method. Here, ultrathin PdCuMo porous nanosheets (PdCuMo NSs) were successfully prepared. This structure possessed a large specific surface area with rich cavities and structural defects, significantly enhancing its ORR performance. In special, the mass activity of PdCuMo NSs was 1.46 A mg−1 at 0.90 V, which was 12.2, 8.6, and 2.7 times as high as that of Pd/C, Pt/C, and PdCuMo nanoparticles (PdCuMo NPs), respectively. In addition, it had an excellent ability to resist CO poisoning and exhibited remarkable long-term stability.  相似文献   

11.
The development of low-cost, efficient, and stable electrocatalysts for the oxygen reduction reaction (ORR) is desirable but remains a great challenge. Herein, we made a highly reactive and stable isolated single-atom Fe/N-doped porous carbon (ISA Fe/CN) catalyst with Fe loading up to 2.16 wt %. The catalyst showed excellent ORR performance with a half-wave potential (E1/2) of 0.900 V, which outperformed commercial Pt/C and most non-precious-metal catalysts reported to date. Besides exceptionally high kinetic current density (Jk) of 37.83 mV cm−2 at 0.85 V, it also had a good methanol tolerance and outstanding stability. Experiments demonstrated that maintaining the Fe as isolated atoms and incorporating nitrogen was essential to deliver the high performance. First principle calculations further attributed the high reactivity to the high efficiency of the single Fe atoms in transporting electrons to the adsorbed OH species.  相似文献   

12.
Developing highly efficient, cost-saving, and durable multifunctional electrocatalysts for oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) continues to be a significant challenge in the energy field. In this work, we decide to prepare an unusual multifunctional electrocatalyst, such as icosahedral palladium nanocrystals (PdNCs) encapsulating on N–MoO2–Mo2C half-hollow nanotube (HHNT) heterointerface, using an in-situ chemical reaction and following sonic probe irradiation method. All the experiments demonstrate that special defect-enriched heterointerfaces N–MoO2–Mo2C supported Pd nanocomposite can greatly improve the ORR activity (Eonset = 1.01 V and E1/2 = 0.90 V) with good stability, outstanding HER (η10 = 65 mV) and OER (η10 = 180 mV) performances than those of commercial precious electrocatalysts (Platinum on carbon [Pt/C] and ruthenium oxide [RuO2]). The overall water splitting electrolyzer fabricates by Pd/N–MoO2–Mo2C as both anode and cathode electrodes to achieve a current density of 10 Ma/cm2 at a cell voltage of 1.56 V, which surpasses the most recent reported electrocatalysts.  相似文献   

13.
It is of increasing importance to develop highly active and economical oxygen reduction reaction (ORR) electrocatalysts, which have great significance for the large-scale implementation of various energy conversion systems, including metal–air batteries and fuel cells. Herein, a novel method to synthesize FeNx-decorated carbon nanotubes as a high-efficiency ORR catalyst, by utilizing ZnO nanowires as a sacrificial template and a Fe–polydopamine complex as metal and carbon sources, is reported. The obtained catalyst shows great potential for replacing Pt/C as the ORR catalyst under various pH conditions, from alkaline to acidic electrolytes. The high conductivity, large surface area of the carbon nanotube, and highly active FeNx species contributed greatly to the high performance of the catalyst. The work presented herein paves a new way for the synthesis of 1D porous nanomaterials for a broad range of energy-related applications.  相似文献   

14.
Transition-metal selenides are emerging as alternative bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR); however, their activity and stability are still less than desirable. Herein, ultrafine Co0.85Se nanoparticles encapsulated into carbon nanofibers (CNFs), Co0.85Se@CNFs, is reported as an integrated bifunctional catalyst for OER and ORR. This catalyst exhibits a low OER potential of 1.58 V vs. reversible hydrogen electrode (RHE) (EJ=10, OER) to achieve a current density (J) of 10 mA cm−2 and a high ORR potential of 0.84 V vs. RHE (EJ=−1, ORR) to reach −1 mA cm−2. Thus, the potential between EJ=10, OER and EJ=−1, ORR is only 0.74 V, indicating considerable bifunctional activity. The excellent bifunctionality can be attributed to high electronic conduction, abundant electrochemically active sites, and the synergistic effect of Co0.85Se and CNFs. Furthermore, this Co0.85Se@CNFs catalyst displays good cycling stability for both OER and ORR. This study paves a new way for the rational design of hybrid catalysts composed of transition-metal selenides and carbon materials for efficiently catalyzing OER and ORR.  相似文献   

15.
The effects of mechanical grinding/polishing, surface roughness, and near‐surface deformation on the electrochemical corrosion behavior of thermally treated (TT) Alloy 690 were studied in a sodium chloride solution. The X‐ray photoelectron spectroscopy and transmission electron microscopy analyses revealed that mechanical grinding/polishing can change the ratio of the elements at the surface of the as‐received Alloy 690TT specimen by removing its Cr‐rich outer layer and causing deformation at the near‐surface microstructure, something which has a direct impact on the rate of the oxygen reduction reaction (ORR), the pitting potential (Epit), and the corrosion potential (Ecorr) of Alloy 690TT. It was observed that the ratio of Cr in the surface is a significant factor that controls the rate of the ORR and the corrosion parameters such as Ecorr. Higher amounts of Cr at the surface accelerate the ORR. The near‐surface deformation shifts the Epit values towards less positive potentials. It was also found that due to the different near‐surface chemical composition of the as‐received Alloy 690TT specimen compared with the ground and the polished specimens, the surface roughness parameters do not have a regular correlation with the rate of the ORR and the values of the Ecorr and the Epit. Only the passive current density increases when the surface roughness is increased. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
An ice/salt-assisted strategy has been developed to achieve the green and efficient synthesis of ultrathin two-dimensional (2D) micro/mesoporous carbon nanosheets (CNS) with the dominant active moieties of Fe−N4 (Fe-N-CNS) as high-performance electrocatalysts for the oxygen reduction reaction (ORR). The strategy involves freeze-drying a mixture of iron porphyrin and KCl salt using ice as template followed by a confined pyrolysis with KCl as an independent sealed nanoreactor to facilitate the formation of 2D carbon nanosheets, N incorporation, and porosity creation. The well-defined assembly of ultrathin 2D carbon nanosheets ensures high utilization of D1 and D3 Fe−N4 active sites, and effectively promotes the mass transport of ORR reactants by virtue of the pronounced mesoporous structure. The resulting Fe-N-CNS electrocatalyst was shown to exhibit superior ORR activity, better electrochemical durability, and methanol tolerance towards ORR in alkaline electrolyte relative to the commercial Pt/C electrocatalyst.  相似文献   

17.
Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface‐mounted NiFe‐MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm?2 at an overpotential of only ≈210 mV. It demonstrates operational long‐term stability even at a high current density of 500 mA cm?2 and exhibits the so far narrowest “overpotential window” ΔEORR‐OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.  相似文献   

18.
Liu Yang  Tao Wang  Dongling Wu 《中国化学》2020,38(10):1123-1131
Heteroatom‐doped carbon materials have been widely used in energy storage and conversion such as supercapacitors and electrocatalysts. In this work, L‐asparagine (Asn), an amino acid derivative, has been used as a doping agent to prepare nitrogen‐ doped reduced graphene oxide gels (N‐GAs). The 3D interconnected structure gives rise to the superior electrochemical properties for supercapacitor and electrocatalytic oxygen reduction reaction (ORR). The N‐GA‐4 (the mass ratio of Asn to graphene oxide (GO) is 4 : 1 by hydrothermal method) electrode shows the capacitance of 291.6 F·g–1 at 0.5 A·g–1. Meanwhile, the assembled symmetric supercapacitor achieves a maximum energy density of 23.8 Wh· kg–1 when the power density is 451.2 W·kg–1, and demonstrates an ultralong cycling life that the retention of capacitance is 99.3% after 80000 cycles. What's more, the annealed aerogel N‐GA‐4‐900 exhibits an onset potential (Eonset) of 0.95 V, half wave potential (E1/2) of 0.84 V (vs. RHE) and the oxygen reduction current density of 5.5 mA·cm–2 at 0.1 V with nearly four‐electron transfer, which are superior to commercial Pt/C. This work offers a new insight into the synthesis and applications of N‐GAs materials towards high performance in supercapacitors and ORR.  相似文献   

19.
Inspired by copper‐based oxygen reduction biocatalysts, we have studied the electrocatalytic behavior of a Cu‐based MOF (Cu‐BTT) for oxygen reduction reaction (ORR) in alkaline medium. This catalyst reduces the oxygen at the onset (Eonset) and half‐wave potential (E1/2) of 0. 940 V and 0.778 V, respectively. The high halfway potential supports the good activity of Cu‐BTT MOF. The high ORR catalytic activity can be interpreted by the presence of nitrogen‐rich ligand (tetrazole) and the generation of nascent copper(I) during the reaction. In addition to the excellent activity, Cu‐BTT MOF showed exceptional stability too, which was confirmed through chronoamperometry study, where current was unchanged up to 12 h. Further, the 4‐electrons transfer of ORR kinetics was confirmed by hydrodynamic voltammetry. The oxygen active center namely copper(I) generation during ORR has been understood by the reduction peak in cyclic voltammetry as well in the XPS analysis.  相似文献   

20.
This work demonstrates the performance of a bio‐inspired iron/sulfur/graphene nanocomposite as a non‐platinum electrocatalyst for the oxygen reduction reaction (ORR) in an alkaline medium. The catalyst shows the most positive ORR onset potential (1.1 V vs. RHE) according to its unique structure in the alkaline medium (KOH solution, pH = 13) at low temperature (T = 298 K). The catalyst is evaluated by the rotating‐disk electrode (RDE) method under various rotating speeds (0–2,000 rpm) in the potential range ?0.02–1.18 V vs. a rechargeable hydrogen electrode (RHE). The number of transferred electrons, as one of the most important parameters, is almost constant over a wide range of potentials (0.1–0.8 V), which indicates a more efficient four‐electron pathway from O2 to H2O on the FePc‐S‐Gr surface. The mean size of catalyst centers are in the nanoscale (<10 nm). The estimated Tafel slope in the appropriate range is about ?110 mV per decade at low current density, and E1/2 of FePc‐S‐Gr displays a negative shift of only 7.1 mV after 10,000 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号