首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In nature, cytochrome c oxidases catalyze the 4e oxygen reduction reaction (ORR) at the heme/Cu site, in which CuI is used to assist O2 activation. Because of the thermodynamic barrier to generate CuI, synthetic Fe-porphyrin/Cu complexes usually show moderate electrocatalytic ORR activity. We herein report on a Co-corrole/Co complex 1-Co for energy-efficient electrocatalytic ORR. By hanging a CoII ion over Co corrole, 1-Co realizes electrocatalytic 4e ORR with a half-wave potential of 0.89 V versus RHE, which is outstanding among corrole-based electrocatalysts. Notably, 1-Co outperforms Co corrole hanged with CuII or ZnII. We revealed that the hanging CoII ion can provide an electron to improve O2 binding thermodynamically and dynamically, a function represented by the biological CuI ion of the heme/Cu site. This work is significant to present a remarkable ORR electrocatalyst and to show the vital role of a second-sphere redox-active metal ion in promoting O2 binding and activation.  相似文献   

2.
A neutral hybrid macrocycle with two trans-positioned N-heterocyclic carbenes (NHCs) and two pyridine donors hosts copper in three oxidation states (+I–+III) in a series of structurally characterized complexes ( 1 – 3 ). Redox interconversion of [LCu]+/2+/3+ is electrochemically (quasi)reversible and occurs at moderate potentials (E1/2=−0.45 V and +0.82 V (vs. Fc/Fc+)). A linear CNHC-Cu-CNHC arrangement and hemilability of the two pyridine donors allows the ligand to adapt to the different stereoelectronic and coordination requirements of CuI versus CuII/CuIII. Analytical methods such as NMR, UV/Vis, IR, electron paramagnetic resonance, and Cu Kβ high-energy-resolution fluorescence detection X-ray absorption spectroscopies, as well as DFT calculations, give insight into the geometric and electronic structures of the complexes. The XAS signatures of 1 – 3 are textbook examples for CuI, CuII, and CuIII species. Facile 2-electron interconversion combined with the exposure of two basic pyridine N sites in the reduced CuI form suggest that [LCu]+/2+/3+ may operate in catalysis via coupled 2 e/2 H+ transfer.  相似文献   

3.
The title compound, {[Cu(NH3)4][Cu(CN)3]2}n, features a CuI–CuII mixed‐valence CuCN framework based on {[Cu2(CN)3]}n anionic layers and [Cu(NH3)4]2+ cations. The asymmetric unit contains two different CuI ions and one CuII ion which lies on a centre of inversion. Each CuI ion is coordinated to three cyanide ligands with a distorted trigonal–planar geometry, while the CuII ion is ligated by four ammine ligands, with a distorted square‐planar coordination geometry. The interlinkage between CuI ions and cyanide bridges produces a honeycomb‐like {[Cu2(CN)3]}n anionic layer containing 18‐membered planar [Cu(CN)]6 metallocycles. A [Cu(NH3)4]2+ cation fills each metallocyclic cavity within pairs of exactly superimposed {[Cu2(CN)3]}n anionic layers, but there are no cations between the layers of adjacent pairs, which are offset. Pairs of N—H...N hydrogen‐bonding interactions link the N—H groups of the ammine ligands to the N atoms of cyanide ligands.  相似文献   

4.
Both trans and cis isomers of azobenzene‐linked bis‐terpyridine ligand L1 were incorporated in rigid macrocycles linked by FeII(tpy)2 (tpy: terpyridine) units. The complex of the longer trans‐ L1 is dinuclear [(trans‐ L1 )2 ? FeII2], whereas the complex of the shorter cis‐ L1 is mononuclear [cis‐ L1? FeII]. The complex cis‐ L1? FeII was not only thermally stable but also photochemically inactive. These results indicate a perfectly locked state of cis‐azobenzene. The stable macrocyclic structure of cis‐ L1? FeII causes locking of the isomerization. To the best of our knowledge, this is first example of dual locking of photo‐ and thermal isomerization of cis‐azobenzene.  相似文献   

5.
Olefins undergo cyclopropanation with diphenylsulfonium (ethoxycarbonyl)methylide (=diphenylsulfonium 2-ethoxy-2-oxoethylide; 3a ) in the presence of chiral CuI or RhII catalysts. trans/cis Ratios and ee's of the cyclopropanes 6 obtained with this ylide in the presence of a chiral CuI catalyst 7 are identical with those obtained with ethyl diazoacetate ( 4 ). In the case of catalysis with RhII, the trans/cis ratios of the cyclopropanes as well as the enantioselectivity change slightly upon going from the ylide 3a to diazoacetate 4 .  相似文献   

6.
The electronic structure and photochemistry of copper formate clusters, CuI2(HCO2)3 and CuIIn(HCO2)2n+1, n≤8, are investigated in the gas phase by using UV/Vis spectroscopy in combination with quantum chemical calculations. A clear difference in the spectra of clusters with CuI and CuII copper ions is observed. For the CuI species, transitions between copper d and s/p orbitals are recorded. For stoichiometric CuII formate clusters, the spectra are dominated by copper d–d transitions and charge-transfer excitations from formate to the vacant copper d orbital. Calculations reveal the existence of several energetically low-lying isomers, and the energetic position of the electronic transitions depends strongly on the specific isomer. The oxidation state of the copper centers governs the photochemistry. In CuII(HCO2)3, fast internal conversion into the electronic ground state is observed, leading to statistical dissociation; for charge-transfer excitations, specific excited-state reaction channels are observed in addition, such as formyloxyl radical loss. In CuI2(HCO2)3, the system relaxes to a local minimum on an excited-state potential-energy surface and might undergo fluorescence or reach a conical intersection to the ground state; in both cases, this provides substantial energy for statistical decomposition. Alternatively, a CuII(HCO2)3Cu0− biradical structure is formed in the excited state, which gives rise to the photochemical loss of a neutral copper atom.  相似文献   

7.
The molecular structure, electrochemistry, spectroelectrochemistry and electrocatalytic oxygen reduction reaction (ORR) features of two CoII porphyrin(2.1.2.1) complexes bearing Ph or F5Ph groups at the two meso-positions of the macrocycle are examined. Single crystal X-ray analysis reveal a highly bent, nonplanar macrocyclic conformation of the complex resulting in clamp-shaped molecular structures. Cyclic voltammetry paired with UV/Vis spectroelectrochemistry in PhCN/0.1 M TBAP suggest that the first electron addition corresponds to a macrocyclic-centered reduction while spectral changes observed during the first oxidation are consistent with a metal-centered CoII/CoIII process. The activity of the clamp-shaped complexes towards heterogeneous ORR in 0.1 M KOH show selectivity towards the 4e ORR pathway giving H2O. DFT first-principle calculations on the porphyrin catalyst indicates a lower overpotential for 4e ORR as compared to the 2e pathway, consistent with experimental data.  相似文献   

8.
The preparation and X‐ray and spectroscopic studies of the title copper(II) complex, [Cu(C12H8N3O2)(CN)(H2O)], are reported. The CuII cation is five‐coordinated, forming a distorted square‐planar pyramid with an Addison τ parameter of 0.14. The UV–vis spectrum shows a dd transition of the CuII centre at 638 nm, and the electron paramagnetic resonance (EPR) spectrum confirms that the CuII cation has an axial symmetry coordination and that the unpaired electrons occupy the dx2y2 orbital. Cyclic voltammetric studies show two irreversible oxidation and reduction peaks.  相似文献   

9.
The title compound, poly[diammine­hexa‐μ‐cyano‐di­copper(I)­copper(II)­mercury(II)], [Cu3Hg(CN)6(NH3)2]n, has a novel threefold‐inter­penetrating structure of three‐dimensional frameworks. This three‐dimensional framework consists of two‐dimensional network Cu3(CN)4(NH3)2 complexes and rod‐like Hg(CN)2 complexes. The two‐dimensional network complex contains trigonal–planar CuI (site symmetry m) and octa­hedral CuII (site symmetry 2/m) in a 2:1 ratio. Two types of cyanide group form bridges between three coordination sites of CuI and two equatorial sites of CuII to form a two‐dimensional structure with large hexa­gonal windows. One type of CN group is disordered across a center of inversion, while the other resides on the mirror plane. Two NH3 mol­ecules (site symmetry 2) are located in the hexa­gonal windows and coordinate to the remaining equatorial sites of CuII. Both N atoms of the rod‐like Hg(CN)2 group (Hg site symmetry 2/m and CN site symmetry m) coordinate to the axial sites of CuII. This linkage completes the three‐dimensional framework and penetrates two hexa­gonal windows of two two‐dimensional network complexes to form the threefold‐inter­penetrating structure.  相似文献   

10.
A tetranuclear CuICuII mixed oxidation state complex, [CuII 2(μ-I)2CuI 2(μ-I)2(phenP)2I2] (phenPE: 2-(1H-pyrazol-1-yl)-1,10-phenanthroline), has been prepared and its crystal structure is determined by X-ray crystallography. In the complex, CuII is a distorted square pyramid and CuI is a distorted trigonal planar coordination environment; CuII and CuI are bridged by iodide. It is rare to form a CuII-iodide bond and for CuII and CuI to be bridged by iodide. In the crystal, there is a slipped ππ stacking between adjacent CuII complexes, which resulted in the formation of the 1-D chain along the c axis. The fitting for the variable-temperature magnetic susceptibility data gave magnetic coupling constant 2J?=??1.16?cm?1 and it may be ascribed to the intermolecular ππ magnetic coupling pathway.  相似文献   

11.
To investigate how the central metalloligand geometry influences distant or vicinal metal‐to‐metal charge‐transfer (MMCT) properties of polynuclear complexes, cis‐ and trans‐isomeric heterotrimetallic complexes, and their one‐ and two‐electron oxidation products, cis/trans‐ [Cp(dppe)FeIINCRuII(phen)2CN‐FeII(dppe)Cp][PF6]2 (cis/trans‐ 1 [PF6]2), cis/trans‐[Cp(dppe)FeIINCRuII(phen)2CNFeIII‐(dppe)Cp][PF6]3 (cis/trans‐ 1 [PF6]3) and cis/trans‐[Cp(dppe)FeIIINCRuII(phen)2CN‐FeIII(dppe)Cp][PF6]4 (cis/trans‐ 1 [PF6]4) have been synthesized and characterized. Electrochemical measurements show the presence of electronic interactions between the two external FeII atoms of the cis‐ and trans‐isomeric complexes cis/trans‐ 1 [PF6]2. The electronic properties of all these complexes were studied and compared by spectroscopic techniques and TDDFT//DFT calculations. As expected, both mixed valence complexes cis/trans‐ 1 [PF6]3 exhibited different strong absorption signals in the NIR region, which should mainly be attributed to a transition from an MO that is delocalized over the RuII‐CN‐FeII subunit to a FeIII d orbital with some contributions from the co‐ligands. Moreover, the NIR transition energy in trans‐ 1 [PF6]3 is lower than that in cis‐ 1 [PF6]3, which is related to the symmetry of their molecular orbitals on the basis of the molecular orbital analysis. Also, the electronic spectra of the two‐electron oxidized complexes show that trans‐ 1 [PF6]4 possesses lower vicinal RuII→FeIII MMCT transition energy than cis‐ 1 [PF6]4. Moreover, the assignment of MMCT transition of the oxidized products and the differences of the electronic properties between the cis and trans complexes can be well rationalized using TDDFT//DFT calculations.  相似文献   

12.
A neutral hybrid macrocycle with two trans‐positioned N‐heterocyclic carbenes (NHCs) and two pyridine donors hosts copper in three oxidation states (+I–+III) in a series of structurally characterized complexes ( 1 – 3 ). Redox interconversion of [LCu]+/2+/3+ is electrochemically (quasi)reversible and occurs at moderate potentials (E1/2=?0.45 V and +0.82 V (vs. Fc/Fc+)). A linear CNHC‐Cu‐CNHC arrangement and hemilability of the two pyridine donors allows the ligand to adapt to the different stereoelectronic and coordination requirements of CuI versus CuII/CuIII. Analytical methods such as NMR, UV/Vis, IR, electron paramagnetic resonance, and Cu Kβ high‐energy‐resolution fluorescence detection X‐ray absorption spectroscopies, as well as DFT calculations, give insight into the geometric and electronic structures of the complexes. The XAS signatures of 1 – 3 are textbook examples for CuI, CuII, and CuIII species. Facile 2‐electron interconversion combined with the exposure of two basic pyridine N sites in the reduced CuI form suggest that [LCu]+/2+/3+ may operate in catalysis via coupled 2 e?/2 H+ transfer.  相似文献   

13.
The title compound, [CuNa(C4H3O7S)(C10H8N2)(H2O)3]n, consists of one CuII cation, one NaI cation, one 2‐sulfonatobutanedioate trianion (SSC3−), one 2,2′‐bipyridyl (bpy) ligand and three coordinated water molecules as the building unit. The coordination of the CuII cation is composed of two pyridyl N atoms, one water O atom and two carboxylate O atoms in a distorted square‐pyramidal coordination geometry with an axial elongation. The NaI cation is six‐coordinated by three water molecules and three carboxylate O atoms from three SSC3− ligands in a distorted octahedral geometry. Two SSC3− ligands link two CuII cations to form a Cu2(SSC)2(bpy)2 macrocyclic unit lying across an inversion centre, which is further linked by NaI cations via Na—O bonds to give a one‐dimensional chain. Interchain hydrogen bonds link these chains to form a two‐dimensional layer, which is further extended into a three‐dimensional supramolecular framework through π–π stacking interactions. The thermal stability of the title compound has also been investigated.  相似文献   

14.
A missed cis isomeric form of a well-known trans-[CuCl2(DMSO)2]n complex has been prepared via the tetranuclear [Cu4Cl8(DMSO)8(hmta)] complex. Structurally, both complexes were found to be molecular i.e. [Cu4Cl8(DMSO)8(hmta)] consists of isolated tetracoordinated hexamethylenetetramine molecules, whereas the cis-complex consists of isolated [(DMSO)2ClCuII(μ-Cl)2CuIICl(DMSO)2] clusters. It should also be noted that the cis-configuration of DMSO molecules in [(DMSO)2ClCuII(μ-Cl)2CuIICl(DMSO)2] was directly transferred from that of [Cu4Cl8(DMSO)8(hmta)], while the trans-[CuCl2(DMSO)2]n isomer was always formed as a final stable product.  相似文献   

15.
In the title complex, [Ag2Cd(CN)4(C12H12N2)2]·H2O or cis‐[Cd{Ag(CN)2}2(5,5′‐dmbpy)2]·H2O, where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridyl, the asymmetric unit consists of a discrete neutral [Cd{Ag(CN)2}2(5,5′‐dmbpy)2] unit and a solvent water molecule. The CdII cation is coordinated by two bidentate chelate 5,5′‐dmbpy ligands and two monodentate [AgI(CN)2] anions, which are in a cis arrangement around the CdII cation, leading to an octahedral CdN6 geometry. The overall structure is stabilized by a combination of intermolecular hydrogen bonding, and AgI...AgI and π–π interactions, forming a three‐dimensional supramolecular network.  相似文献   

16.
In the development of two-qubit quantum gates, precise control over the intramolecular spin-spin interaction between molecular spin units plays a pivotal role. A weak but measurable exchange coupling is especially important for achieving selective spin addressability that allows controlled manipulation of the computational basis states |00⟩ |01⟩ |10⟩ |11⟩ by microwave pulses. Here, we report the synthesis and Electron Paramagnetic Resonance (EPR) study of a heterometallic meso-meso (m-m) singly-linked VIVO−CuII porphyrin dimer. X-band continuous wave EPR measurements in frozen solutions suggest a ferromagnetic exchange coupling of ca. 8 ⋅ 10−3 cm−1. This estimation is supported by Density Functional Theory calculations, which also allow disentangling the ferro- and antiferromagnetic contributions to the exchange. Pulsed EPR experiments show that the dimer maintains relaxation times similar to the monometallic CuII porphyrins. The addressability of the two individual spins is made possible by the different g -tensors of VIV and CuII-ions, in contrast to homometallic dimers where tilting of the porphyrin planes plays a key role. Therefore, single-spin addressability in the heterometallic dimer can be maintained even with small tilting angles, as expected when deposited on surface, unlocking the full potential of molecular quantum gates for practical applications.  相似文献   

17.
The reaction of octamethylenetetrathiafulvalene (OMTTF) with excess CuBr2 in tetrahydrofurane/acetonitrile yields black (OMTTF)2[Cu4Br10] ( 1 ). The crystal structure determination shows the presence of OMTTF cations and tetranuclear bromidocuprate anions. The novel anion consists of four edge and corner sharing CuBr4 tetrahedra, which are connected to a ring. The assignment of the ionic charges and oxidation states for the copper atoms is supported by the magnetic properties. 1 is antiferromagnetic with TN ≈ 30 K. The magnetic moment reaches 2.54 B.M., which indicates, together with the Curie–Weiss constant of –35 K, a coupling of the paramagnetic spins over the whole temperature region. The ionic charges of the salt‐like compound 1 are therefore (OMTTF2+)2[(Cu+)2(Cu2+)2Br10]4–. The antiferromagnetism is explained by the coupling of the spins of two Cu2+ ions in the anion with an exchange constant of J = –18 cm–1. The CuI and CuII atoms are clearly distinguishable in the mixed valent anion. The OMTTF cation is not planar but exhibits an interplanar angle between the two central C3S2 ring moieties of 15.3°, which is in accordance to the dicationic oxidation state.  相似文献   

18.
We report a porous three-dimensional anionic tetrazolium based CuI−MOF 1 , which is capable of cleaving the N−H bond of ammonia and primary amine, as well as the O−H bond of H2O along with spontaneous H2 evolution. In the gas-solid phase reaction of 1 with ammonia and water vapor, CuI−MOF 1 was gradually oxidized to NH2−CuII−MOF and OH−CuII−MOF, through single-crystal-to-single-crystal (SCSC) structural transformations, which was confirmed by XPS, PXRD and X-ray single-crystal diffraction. Density functional theory (DFT) demonstrated that CuI−MOF could lower N−H bond dissociation free energy of ammonia through coordination-induced bond weakening and promote H2 evolution by the reduction potential of 1 . To our knowledge, this is the first example of MOFs that activate ammonia and amine in gas-solid manner.  相似文献   

19.
A stacked assembly composed of a porphyrin and two phthalocyanines was prepared through fourfold rotaxane formation. Two phthalocyanine molecules, bearing four 24‐crown‐8 units, were assembled onto a porphyrin template incorporating four sidechains with two dialkylammonium ions each through pseudorotaxane formation between crown ether units and ammonium ions. The Staudinger phosphite reaction, as the stoppering reaction, resulted in the formation of the stacked heterotrimer composed of a porphyrin and two phthalocyanines connected through a fourfold rotaxane structure. UV/Vis spectroscopic and electrochemical studies of the heterotrimer indicated that there is a significant electronic interaction between the two phthalocyanine units due to the close stacking. The electrochemical oxidation process of the stacked heterotrimer was studied by cyclic voltammetry and spectroelectrochemistry. Electron paramagnetic resonance (EPR) spectroscopy of a dinuclear CuII complex, in which two CuII phthalocyanines were assembled on a metal‐free porphyrin template, revealed that two CuII phthalocyanines were located within the stacking distance, which resulted in an antiferromagnetic interaction between the two S= spins in the ground state of the Cu2+ ions in the heterotrimer.  相似文献   

20.
The new title two-dimensional hetero-tetra nuclear Cu3–Na coordination polymer {[NaCu3Cl(cpiap)2(H2O)3]n·6nH2O} (1) consists of crystallographically two-independent copper(II) centers, each bridged by a sodium cation through carboxylate-oxygen of the deprotonated H3cpiap ligand (H3cpiap = 2-(carboxyphenyl)iminoaceticpropanoic acid) to CuII (2) and CuII (2) cations, and through water molecules to CuII (1) cation. CuII (2) and CuII (1) cations are bridged by carboxylate-oxygen atoms of the ligand in a syn-anti mode which, alternate regularly within the chain being bridged by a tetra coordinated sodium cation. Each CuII (2) and CuII (2) cation in (1) is in an octahedral environment formed by four carboxylate-oxygens from two cpiap3− ligands, one nitrogen atom and a bridging chloride atom. CuII (1) cation is in a square pyramidal environment formed by three water molecules and two carboxylate-oxygens from two cpiap3− ligands. The ligand acts simultaneously as monodentate and tridentate toward CuII (1) and CuII (2) cations respectively. The lattice water molecules involved in OH···O hydrogen bonding are situated in the void spaces between layers. The zigzag chains, which run along the b-axes further construct three-dimensional metal-organic framework via hydrogen bonding and weak face-to-face π-π interactions. Weak CH···O interactions are also present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号