首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Compounds of Silicon. 154 [1]. Unsaturated Silicon Compounds. 61 [1] Disilenes R*RSi=SiRR* (R* = SitBu3) with Silicon‐Bound Me and Ph Groups R: Formation, Identification, Thermolysis, Structure Dehalogenations of the 1, 2‐disupersilylsilanes R*MeBrSi—SiBrMeR* (gauche : trans 1.15 : 1.00) and R*PhClSi—SiBrPhR* (gauche : trans = 2.7 : 1.0) in THF with equimolar amounts of NaR* (R* = SitBu3 = Supersilyl) lead at —78 °C under exchange of bromine for sodium to the disilanides R*MeBrSi—SiNaMeR* and R*PhClSi—SiNaPhR* which are identified by protonation and bromination (formation of R*RXSi—SiX′RR* with R = Me, X/X′ = Br/H, Br/Br: gauche : trans = 1.15 : 1.00, and R = Ph, X/X′ = Cl/H, Cl/Br: gauche : trans = 2.7 : 10, respectively). These eliminate at about —55 °C NaHal with formation of non‐isolable trans‐R*MeSi=SiMeR* and isolable trans‐R*PhSi=SiPhR*. The intermediate existence of the disilene R*MeSi=SiMeR* could be proved by trapping it with PhC≡CPh (formation of a [2+2] cycloadduct; X‐ray structure analysis). In the absence of trapping agents, R*MeSi=SiMeR* decomposes into a mixture of substances, the main product of which is R*MeHSi—SiMeR*—SiHMeR*. The light yellow disilene R*PhSi=SiPhR* has been characterized by spectroscopy (Raman: ν(Si=Si) = 592 cm—1; UV/VIS: λmax = 398 nm with ∈ = 1560; 29Si‐NMR: δ(>Si=) = 128 ppm) and by X‐ray structure analysis (planar central framework >Si=Si<; Si=Si distance 2.182Å). R*PhSi=SiPhR* is reduced by lithium in THF with formation of a red radical anion which decomposes at room temperature into hitherto non‐identified products. At about 70 °C, R*PhSi=SiPhR* decomposes with intramolecular insertion of the Si=Si group into a C—H bond of a Ph group and with change of configuration of the R* groups, which at first are trans then cis‐positioned (X‐ray structure analysis of the thermolysis product).  相似文献   

2.
The kinetics of the oxidative additions of haloheteroarenes HetX (X=I, Br, Cl) to [Pd0(PPh3)2] (generated from [Pd0(PPh3)4]) have been investigated in THF and DMF and the rate constants have been determined. In contrast to the generally accepted concerted mechanism, Hammett plots obtained for substituted 2‐halopyridines and solvent effects reveal a reaction mechanism dependent on the halide X of HetX: an unprecedented SNAr‐type mechanism for X=Br or Cl and a classical concerted mechanism for X=I. These results are supported by DFT studies.  相似文献   

3.
The dihalomethanes CH2X2 (X=Cl, Br, I) were co‐crystallized with the isocyanide complexes trans‐[MXM2(CNC6H4‐4‐XC)2] (M=Pd, Pt; XM=Br, I; XC=F, Cl, Br) to give an extended series comprising 15 X‐ray structures of isostructural adducts featuring 1D metal‐involving hexagon‐like arrays. In these structures, CH2X2 behave as bent bifunctional XB/XB‐donating building blocks, whereas trans‐[MXM2(CNC6H4‐4‐XC)2] act as a linear XB/XB acceptors. Results of DFT calculations indicate that all XCH2–X???XM–M contacts are typical noncovalent interactions with estimated strengths in the range of 1.3–3.2 kcal mol?1. A CCDC search reveals that hexagon‐like arrays are rather common but previously overlooked structural motives for adducts of trans‐bis(halide) complexes and halomethanes.  相似文献   

4.
Summary The i.r. spectra (4000-90 cm–1) of the [Pt(Him)4]X2 complexes (Him = imidazole, X = Cl, Br or I) andcis- andtrans-[Pt(Him)2X2] (X = Cl, Br, I or NO2) and their D3-labelled analogues have been determined. The distinction between the ring and C-H (or N-H) modes of imidazole is based on the relative shifts which these bands undergo on D3-labelling. Assignments, based on the effects of imidazole deuteriation and halide substitution, are provided for the v(Pt-Him) and v(Pt-X) modes.  相似文献   

5.
Summary Gold(I) forms linear [AuL2]X complexes (X = Cl, Br, I or CIO4) with thioacetamide and thiobenzamide, AuLX compounds with thiobenzamide (X = CI or Br),N, N-dimethylthioformamide (X = Cl, Br or 1) andN-dimethylthioacetamide (X = CI, Br or 1). Thev(AuS) vibrations are assigned in the 320-260 cm–1 range. The i.r. spectra further suggest hydrogen bonding between the ligands and the anions. The conductivity measurements indicate dissociation of the [AuL2]X complexes (X = halide) and coordination of X in solution.Presented in part at the XIX ICCC, Prague, 1978.  相似文献   

6.
The isocyanide trans-[PdBr2(CNC6H4-4-X′)2] (X′=Br, I) and nitrile trans-[PtX2(NCC6H4-4-X′)2] (X/X′=Cl/Cl, Cl/Br, Br/Cl, Br/Br) complexes exhibit similar structural motif in the solid state, which is determined by hitherto unreported four-center nodes formed by cyclic halogen bonding. Each node is built up by four Type II C−X′⋅⋅⋅X−M halogen-bonding contacts and include one Type I M−X⋅⋅⋅X−M interaction, thus giving the rhombic-like structure. These nodes serve as supramolecular synthons to form 2D layers or double chains of molecules linked by a halogen bond. Results of DFT calculations indicate that all contacts within the nodes are typical noncovalent interactions with the estimated strengths in the range 0.6–2.9 kcal mol−1.  相似文献   

7.
An alternative synthesis of C‐monoacetylenic phosphaalkenes trans‐Mes*P=C(Me)(C≡CR) (Mes* = 2, 4, 6‐tBu3Ph, R = Ph, SiMe3) from C‐bromophosphaalkenes cis‐Mes*P=C(Me)Br using standard Sonogashira coupling conditions is described. Crystallographic studies confirm cistrans isomerization of the P=C double bond during Pd‐catalyzed cross coupling, leading exclusively to trans‐acetylenic phosphaalkenes. Crystallographic studies of all synthesized compounds reveal the extend of π‐conjugation over the acetylene and P=C π‐systems.  相似文献   

8.
Abstract

The infrared spectra of the complexes M(aq)2(H2O)2X2 (M = Fe, Co, Ni, Cu; aq = 8-aminoquinoline; X =Cl, Br) have been determined over the range 4000-50 cm?1. Absence of vM-X bands indicates that the halide is not coordinated to the metal ion and the complexes are correctly formulated [M(aq)2-(H2O)2]X2. Deuteration of the amino group and the effects of metal ion substitution enable assignment of the vM-NH2, vM-N and vM-OH2 modes as well as the amino group vibrations. 18 O-Labelling assists in identifying the vO-H, vO-H……X and δO-H bands. The spectra are consistent with trans-octahedral coordination and axial bonding of the water molecules. The far infrared spectra of the mono(aminoquinoline) complexes [M(aq)X2]n (M = Cu, Zn; X = Cl, Br) are consistent with the proposed structure of polymeric octahedral coordination involving both bridging and terminal M-X bonds. The vM-NH2, vM-N, vM-X(terminal) and vM-X(bridging) bands are assigned by studying the effects of amino group deuteration, metal ion substitution and halide substitution.  相似文献   

9.
Summary The platinum(II) halidecis-[Pt(DMTC)(DMSO)X2] andcis-[Pt(DETC)(DMSO)X2](X=Cl or Br; DMSO=dimethyl sulfoxide; DMTC=EtOSCN-Me2; DETC=EtOSCNEt2) adducts and the platinum(II) and palladium(II) halide adducts,trans-[M(DETC)2X2] (M=Pt or Pd; X=Cl or Br), have been prepared. The complexes were characterized by i.r., and1H and13Cn.m.r. spectroscopy. Both DMTC and DETC coordinate through the sulphur atoms. The 1:2 DETC complexes present the usualtrans configuration, whereas the presence of DMSO favourscis geometry in the mixed species.  相似文献   

10.
OsII Phthalocyaninates(2?): Synthesis and Properties of (Halo)(carbonyl)phthalocyaninato-(2?)osmate(II) Soluble, blue tetra(n-butyl)ammonium (halo)(carbonyl)phthalocyaninato(2?)osmate(II), (nBu4N)[Os(X)(CO)Pc2?] (X = Cl, Br, I) is obtained by the reaction of [Os(THF)(CO)Pc2?] (THF: tetrahydrofurane) with (nBu4N)X in THF. In the cyclovoltammograms there are three reversible electrode processes at ?1.21 ± 0.01, 0.18 ± 0.04 and 0.65 ± 0.01 V assigned to the three redox pairs Pc2?/Pc3?, OsII/OsIII and Pc2?/Pc3?. In the electronic absorption spectra only the intense B and Q regions are observed at ~ 15800 resp. 27500, 33000 cm?1. The infrared and resonance Raman spectra closely resemble those of other phthalocyaninates(2?) of low valent osmium. In the infrared spectrum v(C? O) is detected at 1896 ± 4 cm?1 and v(Os? X) at 260 (X = Cl), 175 (X = Br) or 143 cm?1 (X = I).  相似文献   

11.
Oxidative addition of Cp*SbX2 (X=Cl, Br, I; Cp*=C5Me5) to group 13 diyls LM (M=Al, Ga, In; L=HC[C(Me)N (Dip)]2, Dip=2,6-iPr2C6H3) yields elemental antimony (M=Al) or the corresponding stibanylgallanes [L(X)Ga]Sb(X)Cp* (X=Br 1 , I 2 ) and -indanes [L(X)In]Sb(X)Cp* (X=Cl 5 , Br 6 , I 7 ). 1 and 2 react with a second equivalent of LGa to eliminate decamethyl-1,1’-dihydrofulvalene (Cp*2) and form stibanyl radicals [L(X)Ga]2Sb . (X=Br 3 , I 4 ), whereas analogous reactions of 5 and 6 with LIn selectively yield stibanes [L(X)In]2SbH (X=Cl 8 , Br 9 ) by elimination of 1,2,3,4-tetramethylfulvene. The reactions are proposed to proceed via formation of [L(X)M]2SbCp* as reaction intermediate, which is supported by the isolation of [L(Cl)Ga]2SbCp ( 11 , Cp=C5H5). The reaction mechanism was further studied by computational calculations using two different models. The energy values for the Ga- and the In-substituted model systems showing methyl groups instead of the very bulky Dip units are very similar, and in both cases the same products are expected. Homolytic Sb−C bond cleavage yields van der Waals complexes from the as-formed radicals ([L(Cl)M]2Sb . and Cp* . ), which can be stabilized by hydrogen atom abstraction to give the corresponding hydrides, whereas the direct formation of Sb hydrides starting from [L(Cl)M]2SbCp* via concerted β-H elimination is unlikely. The consideration of the bulky Dip units reveals that the amount of the steric overload in the intermediate I determines the product formation (radical vs. hydride).  相似文献   

12.
Synthesis and Structure of two Mixed Substituted Dialanes Al2X2{Si(SiMe3)3}2 · 2 THF (X = Cl, Br) The syntheses of tris(trimethylsilyl)silyl (hypersilyl) and halide substituted dialanes Al2X2{Si(SiMe3)3}2 · 2 THF (X = Cl, Br) are presented. The results of the X‐ray diffraction experiments are presented and discussed in comparison to the AlIII compounds AlBr2Si(SiMe3)3 · THF and AlBr3 · OPh2.  相似文献   

13.
The optimal geometry of isomeric molecules of (XP-CCl2)2 with X = F, Cl, Br was determined by RHF/6-31G(d) calculations. With X = F and Cl, the electronic correlation was considered on the MP2/6-31G(d) level. The P2C2 ring is nonplanar. With X = Cl and Br, the trans conformation is energetically preferable compared to the two possible cis conformations: by 7.8 and 14.2 kJ mol- 1 for X = Cl and by 7.5 and 14.1 kJ mol- 1 with X = Br. respectively. With X = F, the calculated energies of the cis and trans forms are very close.  相似文献   

14.
Ruthenium(II) Phthalocyaninates(2–): Synthesis and Properties of (Acido)(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) (nBu4N)[Ru(OH)2Pc2?] is reduced in acetone with carbonmonoxid to blue-violet [Ru(H2O)(CO)Pc2?], which yields in tetrahydrofurane with excess (nBu4N)X acido(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) isolated as red-violet, diamagnetic (nBu4N) complex salt. The UV-Vis spectra are dominated by the typical π-π* transitions of the Pc2? ligand at approximately 15100 (B), 28300 (Q1) und 33500 cm?1 (Q2), only fairly dependent of the axial ligands. v(C? O) is observed at 1927 (X = I), 1930 (Cl, Br), 1936 (N3, NCO) 1948 cm?1 (NCS), v(C? N) at 2208 cm?1 (NCO), 2093 cm?1 (NCS) and v(N? N) at 2030 cm?1 only in the MIR spectrum. v(Ru? C) coincides in the FIR spectrum with a deformation vibration of the Pc ligand, but is detected in the resonance Raman(RR) spectrum at 516 (X = Cl), 512 (Br), 510 (N3), 504 (I), 499 (NCO), 498 cm?1 (NCS). v(Ru? X) is observed in the FIR spectrum at 257 (X = Cl), 191 (Br), 166 (I), 349 (N3), 336 (NCO) and 224 cm?1 (NCS). Only v(Ru? I) is RR-enhanced.  相似文献   

15.
In order to know the relationship between structures and physicochemical properties of Group 12 metal(II) ions, the complexes with ‘simple’ ligands, such as alkyl cyclic diamine ligand and halide ions, were synthesized by the reaction of 1,4‐dimethylhomopiperazine (hp′) with MX2 as metal sources (M = Zn, Cd; X = Cl, Br, I). The five structural types, [ZnX2(hp′)] (X = Cl ( 1 ), Br ( 2 ) and I ( 3 )), [ZnX3(Hhp′)] (X = Cl ( 1′ ) and Br ( 2′ )), [CdCl2(hp′)]n ( 4 ), [{CdCl2(Hhp′)}2(µ‐Cl)2] ( 4′ ) and [{CdX(hp′)}2(µ‐X)2] (X = Br ( 5 ), I ( 6 )), were determined by X‐ray analysis. The sizes of both metal(II) and halide ions and the difference in each other's polarizability influence each structure. All complexes were characterized by IR, far‐IR, Raman and UV–Vis absorption spectroscopies. In the far‐IR and Raman spectra, the typical ν(M N) and ν(M X) peaks clearly depend on the five structural types around 540–410 cm−1 and 350–160 cm−1 respectively. The UV–Vis absorption band energy around 204–250 nm also reflects each structural type. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Herein, we report the synthesis and characterization of a variety of novel poly(hydrogen halide) halogenates (−I). The bifluoride ion, which is known to have the highest hydrogen bond energy of ≈160 kJ mol−1, is the most famous among many examples of [X(HX)n] anions (X=F, Cl) known in the literature. In contrast, little is known about poly(hydrogen halide) halogenates containing two different halogens, ([X(HY)n]). In this work we present the synthesis of anions of the type [X(HY)n] (X=Br, I, ClO4; Y=Cl, Br, CN) stabilized by the [PPh4]+ and [PPN]+ cation. The obtained compounds have been characterized by single-crystal X-ray diffraction, Raman spectroscopy and quantum-chemical calculations. In addition, the behavior of halide ions in hydrogen fluoride was investigated by using experimental and quantum-chemical methods in order to gain knowledge on the acidity of hydrogen halides in HF.  相似文献   

17.
Reaction of copper halides CuX (X=Cl, Br, I) with tri(2‐pyridylmethyl)amine) (TPMA) in THF under N2 affords a series of monomeric copper(I) complexes CuX(TPMA) (X=Cl ( 1 ), Br ( 2 ) and I ( 3 )). Treatment of [CuCl(TPMA)] ( 1 ) with 0.5 equivalent of 1,4‐diisocyanobenzene following by equimolar amount of NaBF4 affords a novel binuclear complex [(TPMA)Cu(μ‐1,4‐CNC6H4NC)Cu(TPMA)](BF4)2 ( 4 ). The copper(I) halide TPMA complexes show interesting fluxional behaviors in temperature dependence in the 1H NMR spectrum that can be explained by the dissociation and reassociation of the pyridyl group and alkylamine nitrogen of TPMA ligand. The crystal structures of 1 , 3 and 4 are determined by an X‐ray diffractometer. Complexes 1 and 3 are distorted tetrahedral coordinates with strong bonding between three pyridyl N atoms and the corresponding halide donor. Crystallographic results of 4 clearly indicates two Cu(I) ions are bridged by 1,4‐diisocyanobenzene, forming a centro‐symmetrical homobinuclear complex with a “dangling” uncoordinated pyridyl group.  相似文献   

18.
1‐Dimensional halocuprate(I) chains [(Cu2X4)2–]n (= [(CuX2)]n, X = Cl, Br, I) have been synthesized under hydrothermal conditions through in‐situ reduction of CuIIX2 with FeIIX2 or as phase pure materials through comproportionation of CuIIX2 or CuIIO with Cu0 metal in the presence of the respective aqueous hydrogen halide HX and a templating amine. Chains of trans edge‐sharing tetrahedra are obtained with piperazinium or ethylenediammonium dications, while the 4,4′‐bipyridinium dication gave chains of cis edge‐sharing tetrahedra. Two monoprotonated piperazinium groups act as cationic ligands (Hpipz+) towards copper atoms in a molecular [Cu4(μ‐Br6)(Hpipz)2] cluster. Electrical crystal conductivities of the halocuprate [(Cu2X4)2–]n (= [(CuX2)]n) chains (X = Cl, Br, I) are around 10–8 S · cm–1 at room temperature.  相似文献   

19.
Investigations are reported on polymerizations of 2- and 4- vinylpyridine, styrene and butadiene by a series of related alkaline earth metal initiators, Ph3CMX(THF)n (M = Ca, Ba, X = Cl, n = 2; M = Ca, X = Br, n = 4; M = Sr, X = Cl, n = 4; M = Sr, X = Br, n = 5) in tetrahydrofuran (THF) or 1,2-dimethoxyethane (DME) at various temperatures and in the absence of solvent. The polymers have been examined by GPC and aspects of their microstructures determined by 13C and/or 1H NMR spectroscopy and, for polybutadiene, i.r. spectroscopy. Poly-2-vinylpyridine produced by Ph3CMX(THF)n is rich in isotactic content; the isotacticity is higher for polymer formed in THF than DME solution, falls with change of initiator in the order M = Ca > Sr > Ba and, in DME, is greater when X = Br. The tacticities of poly-4-vinylpyridine and polystyrene are similar to those obtained from related organometallic initiators. The 1,4-content of polybutadiene decreases with initiator Ph3CMX(THF)n in the order M = Ba > Sr > Ca; the trans-1,4 structure generally predominates except when M = Ba from which cis-1,4 links are formed in comparable amounts.  相似文献   

20.
The synthesis of the m-terphenyl isocyanide ligand CNAr (Mes2) (Mes = 2,4,6-Me 3C 6H 2) is described. Isocyanide CNAr (Mes2) readily functions as a sterically encumbering supporting unit for several Cu(I) halide and pseudo halide fragments, fostering in some cases rare structural motifs. Combination of equimolar quantities of CNAr (Mes2) and CuX (X = Cl, Br and I) in tetrahydrofuran (THF) solution results in the formation of the bridging halide complexes (mu-X) 2[Cu(THF)(CNAr (Mes2))] 2. Addition of CNAr (Mes2) to cuprous chloride in a 2:1 molar ratio generates the complex ClCu(CNAr (Mes2)) 2 in a straightforward manner. Single-crystal X-ray diffraction has revealed ClCu(CNAr (Mes2)) 2 to exist as a three-coordinate monomer in the solid state. As determined by solution (1)H NMR and FTIR spectroscopic studies, monomer ClCu(CNAr (Mes2)) 2 resists tight binding of a third CNAr (Mes2) unit, resulting in rapid isocyanide exchange. Contrastingly, addition of 3 equiv of CNAr (Mes2) to cuprous iodide readily affords the tris-isocyanide species, ICu(CNAr (Mes2)) 3, as determined by X-ray diffraction. Similar coordination behavior is observed in the tris-isocyanide salt [(THF)Cu(CNAr (Mes2)) 3]OTf (OTf = O 3SCF 3), which is generated upon treatment of (C 6H 6)[Cu(OTf)] 2 with 6 equiv of CNAr (Mes2) in THF. The disparate coordination behavior of the [CuCl] fragment relative to both [CuI] and [CuOTf] is rationalized in terms of structure and Lewis acidity of the Cu-containing fragments. The putative triflate species [Cu(CNAr (Mes2)) 3]OTf itself serves as a good Lewis acid and is found to weakly bind C 6H 6 in an eta (1)- C manner in the solid-state. Density Functional Theory is used to describe the bonding and energetics of the eta (1)- C Cu-C 6H 6 interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号