首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The first dinuclear metal‐mediated base pair containing divalent metal ions has been prepared. A combination of the neutral bis(monodentate) purine derivative 1,N6‐ethenoadenine (ϵA), which preferentially binds two metal ions with a parallel alignment of the N−M bonds, and the canonical nucleobase thymine (T), which readily deprotonates in the presence of HgII and thereby partially compensates the charge accumulation due to the two closely spaced divalent metal ions, yields the dinuclear T‐HgII2ϵA base pair. This metal‐mediated base pair stabilizes the DNA oligonucleotide duplex as shown by an increase of 8 °C in its melting temperature. Formation of the base pair was demonstrated by temperature‐dependent UV spectroscopy as well as by titration experiments monitored by UV and CD spectroscopy.  相似文献   

2.
A reaction mechanism that describes the substitution of two imino protons in a thymine:thymine (T:T) mismatched DNA base pair with a HgII ion, which results in the formation of a (T)N3‐HgII‐N3(T) metal‐mediated base pair was proposed and calculated. The mechanism assumes two key steps: The formation of the first HgII? N3(T) bond is triggered by deprotonation of the imino N3 atom in thymine with a hydroxo ligand on the HgII ion. The formation of the second HgII? N3(T) bond proceeds through water‐assisted tautomerization of the remaining, metal‐nonbonded thymine base or through thymine deprotonation with a hydroxo ligand of the HgII ion already coordinated to the thymine base. The thermodynamic parameters ΔGR=?9.5 kcal mol?1, ΔHR=?4.7 kcal mol?1, and ΔSR=16.0 cal mol?1 K?1 calculated with the ONIOM (B3LYP:BP86) method for the reaction agreed well with the isothermal titration calorimetric (ITC) measurements by Torigoe et al. [H. Torigoe, A. Ono, T. Kozasa, Chem. Eur. J. 2010 , 16, 13218–13225]. The peculiar positive reaction entropy measured previously was due to both dehydration of the metal and the change in chemical bonding. The mercury reactant in the theoretical model contained one hydroxo ligand in accord with the experimental pKa value of 3.6 known for an aqua ligand of a HgII center. The chemical modification of T:T mismatched to the T‐HgII‐T metal‐mediated base pair was modeled for the middle base pair within a trinucleotide B‐DNA duplex, which ensured complete dehydration of the HgII ion during the reaction.  相似文献   

3.
Short oligonucleotides incorporating either 1-mercuri-6-phenylcarbazole, 8-mercuri-6-phenylcarbazole, or 1,8-dimercuri-6-phenylcarbazole C-nucleoside in the middle of the chain have been synthesized and studied for their potential as hybridization probes for sequences containing thiopyrimidine nucleobases. All of these oligonucleotides formed very stable duplexes with complementary sequences pairing the organometallic moiety with either 2- or 4-thiothymine. The isomeric monomercurated oligonucleotides were also able to discriminate between 2- and 4-thiothymine based on the different melting temperatures of the respective duplexes. DFT-optimized structures of the most stable mononuclear HgII-mediated base pairs featured a coordinated covalent bond between HgII and either S2 or S4 and a hydrogen bond between the carbazole nitrogen and N3. The dinuclear HgII-mediated base pairs, in turn, were geometrically very similar to the one previously reported to form between 1,8-dimercuri-6-phenylcarbazole and thymine and had one HgII ion coordinated to a thio and the other one to an oxo substituent.  相似文献   

4.
The base‐pairing properties of 5‐mercuricytosine have been explored at the monomer level by NMR titrations and at the oligonucleotide level by melting temperature measurements. The NMR studies revealed a relatively high affinity for guanine, hypoxanthine, and uridine, that is, bases that are deprotonated upon coordination of HgII. Within an oligonucleotide duplex, 5‐mercuricytosine formed HgII‐mediated base pairs with thymine and guanine. In the former case, the duplex formed was as stable as the respective duplex comprising solely Watson–Crick base pairs. Based on detailed thermodynamic analysis of the melting curves, the stabilization by the HgII‐mediated base pairs may be attributed to a comparatively low entropic penalty of hybridization.  相似文献   

5.
By applying caged thymidine residues, DNA duplexes were created in which HgII-mediated base pair formation can be triggered by irradiation with light. When a bidentate ligand was used as the complementary nucleobase, an unprecedented stepwise formation of different metal-mediated base pairs was achieved.  相似文献   

6.
The title complex, [MnHg(SCN)4(CH4N2O)3]n, consists of slightly distorted octahedral MnN3O3 and tetrahedral HgS4 units. The MnII atom is coordinated by the O atoms of three urea mol­ecules and by the N atoms of three SCN? ions; HgII is coordinated by four S atoms from SCN? ions. Each pair of MnII and HgII atoms is connected by an –SCN– bridge, forming infinite two‐dimensional –Mn—NCS—Hg– networks.  相似文献   

7.
An 11-mer oligonucleotide incorporating a central (2-iodobenzoylamino)methyl residue has been synthesized and palladated by oxidative addition of Pd2(dba)3. UV melting profiles of the duplexes formed by the palladated oligonucleotide with its natural complements were biphasic and the higher melting temperatures (Tm) exhibited considerable hysteresis. CD spectra, in turn, resembled those of canonical B-type double helices. Two-step denaturation, with the “low-Tm” melting involving only canonical base pairs and the “high-Tm” melting involving also dissociation of a PdII-mediated base pair, appears the most likely explanation for the observed UV melting profiles. As the latter step in all cases takes place at a higher temperature than denaturation of natural duplexes of the same length, the putative PdII-mediated base pairs are stabilizing.  相似文献   

8.
Light‐yellow single crystals of the mixed‐valent mercury‐rich basic nitrate Hg8O4(OH)(NO3)5 were obtained as a by‐product at 85 °C from a melt consisting of stoichiometric amounts of (HgI2)(NO3)2·2H2O and HgII(OH)(NO3). The title compound, represented by the more detailed formula HgI2(NO3)2·HgII(OH)(NO3)·HgII(NO3)2·4HgIIO, exhibits a new structure type (monoclinic, C2/c, Z = 4, a = 6.7708(7), b = 11.6692(11), c = 24.492(2) Å, β = 96.851(2)°, 2920 structure factors, 178 parameters, R1[F2 > 2σ(F2)] = 0.0316) and is made up of almost linear [O‐HgII‐O] and [O‐HgI‐HgI‐O] building blocks with typical HgII‐O distances around 2.06Å and a HgI‐O distance of 2.13Å. The Hg22+ dumbbell exhibits a characteristic Hg‐Hg distance of 2.5079(7) Å. The different types of mercury‐oxygen units form a complex three‐dimensional network exhibiting large cavities which are occupied by the nitrate groups. The NO3? anions show only weak interactions between the nitrate oxygen atoms and the mercury atoms which are at distances > 2.6Å from one another. One of the three crystallographically independent nitrate groups is disordered.  相似文献   

9.
The title complex, [MnHg(NCS)4(C2H5NO)2]n, consists of slightly distorted MnN4O2 octa­hedra and HgS4 tetra­hedra. Each MnII cation is bound to four N atoms of the NCS groups and two O atoms of the N‐methyl­formamide (NMF) ligands in a cis configuration. Each HgII cation is coordinated to four S atoms of NCS groups. Each pair of MnII and HgII cations is connected by an –NCS– bridge, forming an infinite three‐dimensional –Mn—NCS—Hg– network.  相似文献   

10.
3‐(Pyridin‐4‐yl)acetylacetone (HacacPy) acts as a pyridine‐type ligand towards CdII and HgII halides. With CdBr2, the one‐dimensional polymer [Cd(μ‐Br)2(HacacPy)Cd(μ‐Br)2(HacacPy)2] is obtained in which five‐ and six‐coordinated CdII cations alternate in the chain direction. Reaction of HacacPy with HgBr2 results in [Hg(μ‐Br)Br(HacacPy)], a polymer in which each HgII centre is tetracoordinated. In both compounds, each metal(II) cation is N‐coordinated by at least one HacacPy ligand. Equimolar reaction between these CdII and HgII derivatives, either conducted in ethanol as solvent or via grinding in the solid state, leads to ligand redistribution and the formation of the well‐ordered bimetallic polymer catena‐poly[[bromidomercury(II)]‐μ‐bromido‐[aquabis[4‐hydroxy‐3‐(pyridin‐4‐yl)pent‐3‐en‐2‐one]cadmium(II)]‐di‐μ‐bromido], [CdHgBr4(C10H11NO2)2(H2O)]n or [{HgBr}(μ‐Br){(HacacPy)2Cd(H2O)}(μ‐Br)2]. HgII and CdII cations alternate in the [100] direction. The HacacPy ligands do not bind to the HgII cations, which are tetracoordinated by three bridging and one terminal bromide ligand. The CdII centres adopt an only slightly distorted octahedral coordination. Three bromide ligands link them in a (2 + 1) pattern to neighbouring HgII atoms; two HacacPy ligands in a cis configuration, acting as N‐atom donors, and a terminal aqua ligand complete the coordination sphere. Classical O—H…Br hydrogen bonds stabilize the polymeric chain. O—H…O hydrogen bonds between aqua H atoms and the uncoordinated carbonyl group of an HacacPy ligand in a neighbouring strand in the c direction link the chains into layers in the (010) plane.  相似文献   

11.
Metal coordination to N9‐substituted adenines, such as the model nucleobase 9‐methyladenine (9MeA), under neutral or weakly acidic pH conditions in water preferably occurs at N1 and/or N7. This leads, not only to mononuclear linkage isomers with N1 or N7 binding, but also to species that involve both N1 and N7 metal binding in the form of dinuclear or oligomeric species. Application of a trans‐(NH3)2PtII unit and restriction of metal coordination to the N1 and N7 sites and the size of the oligomer to four metal entities generates over 50 possible isomers, which display different feasible connectivities. Slowly interconverting rotamers are not included in this number. Based on 1H NMR spectroscopic analysis, a qualitative assessment of the spectroscopic features of N1,N7‐bridged species was attempted. By studying the solution behavior of selected isolated and structurally characterized compounds, such as trans‐[PtCl(9MeA‐N7)(NH3)2]ClO4 ? 2H2O or trans,trans‐[{PtCl(NH3)2}2(9MeA‐N1,N7)][ClO4]2 ? H2O, and also by application of a 9MeA complex with an (NH3)3PtII entity at N7, [Pt(9MeA‐N7)(NH3)3][NO3]2, which blocks further cross‐link formation at the N7 site, basic NMR spectroscopic signatures of N1,N7‐bridged PtII complexes were identified. Among others, the trinuclear complex trans‐[Pt(NH3)2{μ‐(N1‐9MeA‐N7)Pt(NH3)3}2][ClO4]6 ? 2H2O was crystallized and its rotational isomerism in aqueous solution was studied by NMR spectroscopy and DFT calculations. Interestingly, simultaneous PtII coordination to N1 and N7 acidifies the exocyclic amino group of the two 9MeA ligands sufficiently to permit replacement of one proton each by a bridging heterometal ion, HgII or CuII, under mild conditions in water.  相似文献   

12.
A solution of deprotonated 1,3‐bis(4‐bromophenyl)triazene reacts with Hg(CH3COO)2 in methanol / tetrahydrofurane to give yellow crystalline needles of {HgII[NNN(PhBr)2]2}n, a triazenide complex polymer of HgII with metal‐η22‐arene π‐interactions, performed by coordinated single triazenide chains. The crystal structure of the new polymeric complex of HgII belongs to the monoclinic space group P21/n. The lattice of [HgII(BrPhNNNPhBr)2]n can be viewed as a one‐dimensional assembling of planar tectons [HgII(BrPhNNNPhBr)2] linked through metalocene alike HgII‐η22‐arene π‐interactions along the crystallographic b axis.  相似文献   

13.
在本文中,我们研制了一种基于T-T碱基错配特异性键合汞离子的荧光传感器用于汞离子的检测。该传感器由两条分别标记了荧光基团(F)和淬灭基团(Q)的DNA探针组成,并且含有两对用于结合汞离子的T-T错配碱基。当汞离子存在时,两条探针之间形成T-Hg2+-T结构,作用力增强,从而拉近了荧光基团与淬灭基团之间的距离,发生能量转移,使荧光信号在一定程度上被淬灭。在优化的条件下,我们使用该传感器对汞离子进行检测,动力学响应范围为50nM到1000nM,线性相关方程为y= 5281.13 - 1650.56 lg[Hg2+] ( R2 = 0.985),检测下限为79nM。此外,我们还考察了该传感器的选择性,当用其它干扰离子(浓度都为1.0µM)代替待测离子进行实验时,没有发生明显的荧光淬灭,说明该传感器具有较高的选择性。该传感器的构建为汞离子的检测提供了一条快速、简便的新途径。  相似文献   

14.
Bis(2‐thienyl)diketopyrrolopyrrole with two ZnII‐cyclens (ZnCyc‐DPP) was designed and synthesized to evaluate the selective binding of ZnII‐cyclen with thymine base in single‐strand DNA as a tool for the construction of a highly ordered multichromophore system on DNAs. Through UV/Vis titrations, gel filtration chromatography, and circular dichroism spectroscopy, ZnCyc‐DPP formed J‐type DPP aggregates with oligo‐dTn DNAs. The DPP aggregates absorbed on a gold electrode exhibited good photocurrent responses. The present results show that binding ZnII‐cyclen–chromophore conjugates and thymine bases together is a powerful tool for preparing DNA‐templated multichromophoric systems with specific functions.  相似文献   

15.
Reactions of sodium 4-pyridin-2-yl-pyrimidine-2-sulfonate (NaL) with CuII and MnII ions in water produced a zig-zag chain polymer, [CuL(NCS)] n (1), and a dinuclear complex, [Mn2L2Cl2(H2O)2] (2), respectively. It is observed that counteranions and hydrogen bonds play basic roles in the resulting structure in which 3D networks were formed through intermolecular hydrogen bonding.  相似文献   

16.
Metal‐mediated base pairs can be used to insert metal ions into nucleic acids at precisely defined positions. As structural data on the resulting metal‐modified DNA are scarce, appropriate model complexes need to be synthesized and structurally characterized. Accordingly, the molecular structures of nine transition metal complexes of N‐methyl‐2, 2'‐dipicolylamine (dipic) are reported. In combination with an azole‐containing artificial nucleoside, this tridentate ligand had recently been used to generate metal‐mediated base pairs (Chem. Commun. 2011 , 47, 11041–11043). The PdII and PtII complexes reported here confirm that the formation of planar complexes (as required for a metal‐mediated base pair) comprising N‐methyl‐2, 2'‐dipicolylamine is possible. Two HgII complexes with differing stoichiometry indicate that a planar structure might also be formed with this metal ion, even though it is not favored. In the complex [Ag2(dipic)2](ClO4)2, the two AgI ions are located close to one another with an Ag ··· Ag distance of 2.9152(3) Å, suggesting the presence of a strong argentophilic interaction.  相似文献   

17.
In nature, thiolate-based systems are the primary targets of divalent mercury (HgII) toxicity. The formation of Hg(Cys)x cores in catalytic and structural protein centers mediates mercury's toxic effects and ultimately leads to cellular damage. Multiple studies have revealed distinct HgII-thiolate coordination preferences, among which linear HgII complexes are the most commonly observed in solution at physiological pH. Trigonal or tetrahedral geometries are formed at basic pH or in tight intraprotein Cys-rich metal sites. So far, no interprotein tetrahedral HgII complex formed at neutral pH has been reported. Rad50 protein is a part of the multiprotein MRN complex, a major player in DNA damage-repair processes. Its central region consists of a conserved CXXC motif that enables dimerization of two Rad50 molecules by coordinating ZnII. Dimerized motifs form a unique interprotein zinc hook domain (Hk) that is critical for the biological activity of the MRN. Using a series of length-differentiated peptide models of the Pyrococcus furiosus zinc hook domain, we investigated its interaction with HgII. Using UV-Vis, CD, PAC, and 199Hg NMR spectroscopies as well as anisotropy decay, we discovered that all Rad50 fragments preferentially form homodimeric Hg(Hk)2 species with a distorted tetrahedral HgS4 coordination environment at physiological pH; this is the first example of an interprotein mercury site displaying tetrahedral geometry in solution. At higher HgII content, monomeric HgHk complexes with linear geometry are formed. The Hg(Cys)4 core of Rad50 is extremely stable and does not compete with cyanides, NAC, or DTT. Applying ITC, we found that the stability constant of the Rad50 Hg(Hk)2 complex is approximately three orders of magnitude higher than those of the strongest HgII complexes known to date.  相似文献   

18.
In the title centrosymmetric dimer, [Pb2(sbc)2(phen)2]·2H2O [sbc is the 2‐sulfonatobenzoate dianion (C7H4O5S) and phen is 1,10‐phenanthroline (C12H8N2)], each PbII ion is six‐coordinated by four O atoms, viz. carboxyl­ate and sulfonate O atoms from two sbc anions, and two N atoms from a 1,10‐phenanthroline ligand. One 1,10‐phenanthroline ligand and the carboxyl­ate group of one sbc ligand are chelated to each PbII cation, and the sulfonate group of the other sbc unit is monodentate. One O atom of the chelated carboxyl­ate group also bridges to the other PbII cation, so that each pair of PbII ions is bridged by two sbc anions and has the same coordination environment, forming a dinuclear ring. Each pair of PbII ions is thus connected by two different kinds of bridges, namely a carboxyl­ate short bridge and a carboxyl­ate–sulfonate long bridge. There is also a special position of site symmetry at the centre of the two PbII cations.  相似文献   

19.
Metal‐mediated base pairs formed by the coordination of metal ions to natural or artificial bases impart unique chemical and physical properties to nucleic acids and have attracted considerable interest in the field of nanodevices. AgI ions were found to mediate DNA polymerase catalyzed primer extension through the formation of a C–AgI–T base pair, as well as the previously reported C–AgI–A base pair. The comparative susceptibility of dNTPs to AgI‐mediated enzymatic incorporation into the site opposite cytosine in the template was shown to be dATP>dTTP?dCTP. Furthermore, two kinds of metal ions, AgI and HgII, selectively mediate the incorporation of thymidine 5′‐triphosphate into sites opposite cytosine and thymine in the template, respectively. In other words, the regulated incorporation of different metal ions into programmed sites in the duplex by DNA polymerase was successfully achieved.  相似文献   

20.
A dinuclear Schiff base RuII complex derived from 5‐chlorosalicylaldehyde and 2‐aminopyridine was synthesized. The structure of the compound was analyzed by mass spectrometry as well as IR, UV/Vis, and 1H NMR spectroscopy, along with chemical analysis,as well as magnetic, cyclovoltammetric and conductivity measurements. Two RuII atoms are octahedrally coordinated by azomethine and pyridine nitrogen atoms from two tridentate monobasic Schiff bases and bridging phenol oxygen atoms. The formula of the complex is [Ru2L2Cl2(Et2NH)(H2O)] [L = N‐(2‐pyridyl)‐5‐chlorosalicylideneimine and Et2NH = isodiethylamine]. The RuII atoms in the dinuclear neutral complex species have different coordination environments, RuN3O2Cl and RuN2O3Cl. Interaction with CT DNA showed moderate hydrophobic binding. The compound demonstrates strong activity against methicillin‐resistant Staphylococcus aureus, methicillin‐sensitive Staphylococcus aureus, and especially Enterococcus faecalis. Microbiological tests showed significant inhibition of growth and ability to kill pathogens, similar or even improved compared to reference antibiotics vancomycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号