首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beckers JL  Bocek P 《Electrophoresis》2002,23(12):1947-1952
Surfactants are frequently used in the preparation of background electrolytes (BGEs) in capillary zone elcetrophoresis (CZE) in order to affect and to optimize both the electroosmotic flow (EOF) and the separation process. Their effects are, however, always multiple, the resulting situation may be very complex and the separation process may even be destroyed. We use the surfactant cetyltrimethylammonium bromide (CTAB) as a model example and bring experimental results and related discussion which elucidate the multiple effect of surfactants in an integrated way. It is shown that even at concentration levels lower than 10(-4) M CTAB strongly reduces the cathodic EOF in bare fused-silica capillaries and converts it into anodic EOF. The magnitude and polarity of the EOF depends not only on the concentration of CTAB but also on the composition of BGEs used. The interactions of CTA cations with the bare capillary wall reduce sorption of cationic analytes and enables their analysis. CTA cations at levels below their critical micelles concentration (CMC) already interact with anionic analytes and reduce their mobilities. This association is strong with highly charged anions and by this, the reversal of the EOF, applying BGEs with highly charged anions is less effective. These interactions are competitive and also depend on the composition of the BGE used. At levels above its CMC, CTAB forms micelles and enables the application of the micellar electrokinetic capillary chromatography (MEKC) mode and the analysis of, e.g., neutral components. Simultaneously, it is shown that the presence of CTAB may increase the number of potentially formed system zones.  相似文献   

2.
Capillary zone electrophoretic (CZE) separations and mass spectrometric analysis of salmon calcitonin and related analogues were performed to generate electrophoresis and mass fingerprints for quality control of the recombinant polypeptide pharmaceutical salmon calcitonin. The calcitonins and their corresponding tryptic digests were successfully separated by CZE at low pH in fused silica capillaries dynamically modified with poly-cationic polymers. The poly-cationic modified inner surface of the fused silica capillaries generated a strong anionic electroosmotic flow (EOF). Analytes of negative, neutral, and positive charge were all swept through the capillary toward the positive electrode. Compared to Polybrene-coated capillaries, capillaries coated with PEI showed a markedly slower but much more stable electroosmotic flow. The migration order of the analytes was predicted by comparing approximate values of the charge to (molecular mass)2/3 ratios. The predicted migration order was confirmed by off-line analysis of CZE fractions with matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS).  相似文献   

3.
Surface modification of the inner capillary wall in CE of proteins is frequently required to alter EOF and to prevent protein adsorption. Manual protocols for such coating techniques are cumbersome. In this paper, an automated covalent linear polyacrylamide coating and regeneration process is described to support long‐term stability of fused‐silica capillaries for protein analysis. The stability of the resulting capillary coatings was evaluated by a large number of separations using a three‐protein test mixture in pH 6 and 3 buffer systems. The results were compared to that obtained with the use of bare fused‐silica capillaries. If necessary, the fully automated capillary coating process was easily applied to regenerate the capillary to extend its useful life‐time.  相似文献   

4.
The performance of dynamic double‐coated fused‐silica capillaries with Polybrene and chondroitin sulfate A has been compared with uncoated fused‐silica capillaries for the determination of recombinant human growth factor (somatropin) charge variants. The separations were carried out under the same electrophoretic conditions as described in the European Pharmacopoeia, i.e. at pH 6.0 and 30°C. The coating significantly reduced the interactions between the proteins and the surface of the fused‐silica capillary. The first five separations performed in a new bare fused‐silica capillary were discarded because of very poor separation performance as a result of protein–surface interactions. There was an approximate twofold increase in the interday migration time precision (%RSD ≤ 6.5%) in the double‐coated capillaries. The method was successfully transferred to a multiple CZE mode where two samples were analyzed in a single electrophoretic run. The average purity of somatropin certified reference standard was 98.0% (%RSD ≤ 0.3%) determined by using uncoated and coated capillaries.  相似文献   

5.
Quasi‐interpenetrating network (quasi‐IPN) of linear polyacrylamide (LPA) with low molecular mass and poly(N,N‐dimethylacrylamide) (PDMA), which is shown to uniquely combine the superior sieving ability of LPA with the coating ability of PDMA, has been synthesized for application in dsDNA and basic protein separation by CE. The performance of quasi‐IPN on dsDNA separation was determined by polymer concentration, electric field strength, LPA molecular masses and different acrylamide (AM) to N,N‐dimethylacrylamide (DMA) ratio. The results showed that all fragments in Φ×174/HaeIII digest were achieved with a 30 cm effective capillary length at –6 kV at an appropriate polymer solution concentration in bare silica capillaries. Furthermore, EOF measurement results showed that quasi‐IPN exhibited good capillary coating ability, via adsorption from aqueous solution, efficiently suppressing EOF. The effect of the buffer pH values on the separation of basic proteins was investigated in detail. The separation efficiencies and analysis reproducibility demonstrated the good potentiality of quasi‐IPN matrix for suppressing the adsorption of basic proteins onto the silica capillary wall. In addition, when quasi‐IPN was used both as sieving matrix and dynamic coating in bare silica capillaries, higher peak separation efficiencies, and better migration time reproducibility were obtained.  相似文献   

6.
In this work, a new physically adsorbed coating for CE is presented. This coating is based on a poly(N,N‐dimethylacrylamide‐co‐4‐(ethyl)‐morpholine methacrylamide) (DMA/MAEM) copolymer synthesized in our laboratory. It is demonstrated that the direction and magnitude of the EOF in CE can be modulated by varying the composition of the DMA/MAEM copolymer and the type and pH of the BGE. Moreover, the DMA/MAEM coating provides %RSDn = 5 values for migration times lower than 0.9% for the same capillary and day, whereas the %RSDn = 25 obtained for the interday assay was lower than 2.9%. The stability of the coating procedure is also tested between capillaries obtaining %RSDn = 15 values lower than 2.9%, demonstrating that this physically adsorbed copolymer gives rise to a stable and reproducible coating in CE. Finally, the usefulness of this new cationic copolymer as CE coating is demonstrated through different applications. Namely, it is demonstrated that the CE separation of basic proteins, nucleotides and organic acids is achieved in a fast and easy way by using the DMA/MAEM coated capillary. The use of fused bare silica capillaries did not allow the separation of these compounds under the same analytical conditions. These results demonstrate that this type of coating in CE provides the option of using BGEs that are useless when utilized together with bare silica capillaries making wider the application and possibilities of this analytical technique.  相似文献   

7.
Dynamic computer simulation data are compared for the first time with CE data obtained with a laboratory made system comprising an array of 8 contactless conductivity detectors (C4Ds). The experimental setup featured a 50 μm id linear polyacrylamide (LPA) coated fused‐silica capillary of 70 cm length and a purpose built sequential injection analysis manifold for fluid handling of continuous or discontinuous buffer configurations and sample injection. The LPA coated capillary exhibits a low EOF and the manifold allows the placement of the first detector at about 2.7 cm from the sample inlet. Agreement of simulated electropherograms with experimental data was obtained for the migration and separation of cationic and anionic analyte and system zones in CZE configurations in which EOF and other column properties are constant. For configurations with discontinuous buffer systems, including ITP, experimental data obtained with the array detector revealed that the EOF is not constant. Comparison of simulation and experimental data of ITP systems provided the insight that the EOF can be estimated with an ionic strength dependent model similar to that previously used to describe EOF in fused‐silica capillaries dynamically double coated with Polybrene and poly(vinylsulfonate). For the LPA coated capillaries, the electroosmotic mobility was determined to be 17‐fold smaller compared to the case with the charged double coating. Simulation and array detection provide means for quickly investigating electrophoretic transport and separation properties. Without realistic input parameters, modeling alone is not providing data that match CE results.  相似文献   

8.
Danger G  Pascal R  Cottet H 《Electrophoresis》2008,29(20):4226-4237
The control of the EOF direction and magnitude remains one of the more challenging issues for the optimization of separations in CE. In this work, we investigated the possibility to use non-uniform surface charge distribution for the modulation of the EOF in CE. Non-uniform zeta potentials were obtained by modifying a section of the capillary surface using adsorption of polyelectrolytes. Three different methods were studied: (i) partial polycation coating on a fused silica capillary, (ii) partial polycation (or polyanion) coating on polyelectrolyte multilayers, and (iii) partial polycation coating on a capillary previously modified with poly(ethylene oxide). The magnitude and the direction of the EOF as a function of the coated capillary length were first studied. The stability of the EOF and the separation performances were also considered taking two dialanine diastereoisomers as model compounds. In partially coated capillaries, the average solvent flow is the sum of two contributions: a non-dispersive electroosmotic contribution related to the capillary surface charge, and a dispersive hydrodynamic contribution that depends on the difference of surface charge between the coated and the non-coated capillary zones. To get a better insight into the influence of the hydrodynamic contribution to the total peak dispersion, the peak variances corresponding to the Taylor dispersion, the injection plug, and the axial diffusion were calculated. This work demonstrates that peak dispersion in a capillary partially coated by the inlet end is different from that obtained when the coating is performed by the outlet end. Experimentally, the combination of a partially coated capillary with a large volume sample stacking preconcentration step can be used for injecting up to 95% of the capillary volume. This approach leads to a preconcentration factor of 60 compared with CZE with classical injection.  相似文献   

9.
Mixtures of several basic proteins have been used to test CZE capillaries with surfaces modified by new pretreatment procedures; the performance obtained has been compared with that achieved using capillaries treated by procedures described in the literature. It has been shown that addition of non-ionic polyvinylalcohols (PVA) to CZE buffer solutions deactivates even bare, i.e. untreated, fused silica surfaces and renders them suitable for separations of basic proteins. The performance obtained from such surfaces was comparable with that of capillaries modified by the more elaborate procedures of etching, silanol derivatization, and/or adsorptive coating (again with polymers). A home-made device is described which enables derivatization and coating reactions to be performed on fused silica capillaries under an inert atmosphere, i.e. one free from oxygen and water.  相似文献   

10.
With unique 3‐D architecture, the application of core‐based hyperbranched polyethyleneimine (CHPEI), as a capillary coating in capillary electrophoresis, is demonstrated by manipulation of the electroosmotic mobility (EOF). CHPEI coatings (CHPEI5, Mw ≈? 5000 and CHPEI25, Mw ≈? 25 000) were physically adsorbed onto the inner surface of bare fused‐silica capillary (BFS) via electrostatic interaction of the oppositely charged molecules by rinsing the capillaries with different CHPEI aqueous solutions. The EOF values of the coated capillaries were measured over the pH range of 4.0–9.0. At higher pH (pH >6) the coated capillary surface possesses excess negative charges, which causes the reversal of the EOF. The magnitudes of the EOF obtained from the coated capillaries were three‐fold lower than that of BFS capillary. Desirable reproducibility of the EOF with % RSD (n = 5) ? 2 was obtained. Effect of ionic strength, stability of the coating (% RSD = 0.3) and the dependence of the EOF on pH (% RSD = 0.5) were also investigated. The CHPEI‐coated capillaries were successfully utilized to separate phenolic compounds, B vitamins, as well as basic drugs and related compounds with reasonable analysis time (<20 min) and acceptable migration‐time repeatability (<0.7% RSD for intra‐capillary and <2% RSD for inter‐capillary).  相似文献   

11.
报道了一种毛细管电泳分析中获得重复性分析结果的毛细管柱预处理方法。通过采用有机溶剂的碱性溶液对毛细管柱进行预冲洗,可得到内壁均一的能产生稳定电渗流的毪 细管术,实现了强极性有机化合物如硝基酚的毛细管区带电泳分析。  相似文献   

12.
Yeung KK  Atwal KK  Zhang H 《The Analyst》2003,128(6):566-570
The use of surfactants as additives was demonstrated for the first time in capillary isoelectric focusing (CIEF) to dynamically modify the surfaces of bare fused silica capillaries. These surfactants were zwitterionic sulfobetaines: dodecyldimethyl (3-sulfopropyl) ammonium hydroxide (C12N3SO3), hexadecyldimethyl (3-sulfopropyl) ammonium hydroxide (C16N3SO3) and coco (amidopropyl)hydroxyldimethylsulfobetaine (Rewoteric AM CAS U). They were added directly to the protein-ampholyte mixture, and remained in the capillary during isoelectric focusing and mobilization. The C16N3SO3 and CAS U coatings were shown effective in CEF. Separation of seven IEF protein standards was obtained, with significantly improved resolution compared to that from an uncoated silica capillary. The effect of these surfactants on the electroosmotic flow (EOF) in CIEF was determined. CAS U was effective in suppressing the EOF at neutral and alkaline pH conditions, C16N3SO3 was effective in suppressing EOF at acidic and neutral pH conditions. C12N3SO3 however had little effect on the EOF. The pH gradients formed inside these surfactant coated capillaries were recta-linear at pH 6 to 9 (R2 approximately equal to 0.99). Reproducibility of migration time and peak area was determined. For all three coatings, the migration time standard deviations were less than 1.6 min, and the relative standard deviations of area were below 10%. The protein recovery in the CAS U-modified capillary was quantitative or near-quantitative for five of the seven proteins studied.  相似文献   

13.
Berli CL  Piaggio MV  Deiber JA 《Electrophoresis》2003,24(10):1587-1595
A theoretical relation between the zeta potential of silica capillaries and the composition of the background electrolyte (BGE) is presented in order to be used in capillary zone electrophoresis (CZE). This relation is derived on the basis of the Poisson-Boltzmann equation and considering the equilibrium dissociation of silanol groups at the capillary wall as the mechanism of charge generation. The resulting model involves the relevant physicochemical parameters of the BGE-capillary interface. Special attention is paid to the characterization of the BGE, which can be either salt or/and buffer solutions. The model is successfully applied to electroosmotic flow (EOF) experimental data of different aqueous solutions, covering a wide range of pH and ionic strength. Numerical predictions are also presented showing the capability of the model to quantify the EOF, the control of which is relevant to improve analyte separation performance in CZE.  相似文献   

14.
毛细管电泳中影响径向电场控制电渗的主要因素   总被引:3,自引:0,他引:3  
朱英  陈义 《色谱》1999,17(6):525-528
利用自制的二维电场毛细管电泳系统研究了不同因素对径向电场控制电渗能力的影响,发现缓冲液的pH值、浓度、种类以及管壁表面状态、管径等对电渗的电场调控有关键性的影响。有趣的是,添加剂不影响电场的调控能力,而杯芳烃涂层毛细管却能提高电渗对径向电场的响应能力。利用这种涂层效应有可能实现较高pH值下电渗的电场调控。  相似文献   

15.
Wu ZQ  Cao XD  Chen L  Zhang JR  Xia XH  Fang Q  Chen HY 《Electrophoresis》2010,31(22):3665-3674
Hybrid chips combing microchips with capillaries have displayed particular advantages in achieving UV-vis and mass spectroscopic detection. In this work, systematic 3-D numerical simulations have been carried out to explore the influence of junction interface cross-sectional area and ζ-potential distribution on sample band broadening in hybrid-chip electrophoresis separation. In this case, the ratio of cross-sectional area of chip to capillary channel (S(ratio) ) is used as the parameter of the variation in junction interface cross-sectional area. Theoretical simulations demonstrated that the decrease of the S(ratio) would increase the separation efficiency in the hybrid-chip-based CE with uniform ζ-potential distribution. ζ-potential distribution along the axial direction of the channel also affects mass transport in hybrid-chip-based CE. Therefore, the effect of ζ-potential distribution has been considered in the 3-D simulation. Theoretical simulation results reveal that ζ-potential distribution rather than the interface cross-sectional area variation (S(ratio) ) controls the sample band broadening and manipulates sample separation efficiency in the hybrid-chip-based CE with non-uniform ζ-potential distribution. Both the theoretical simulations and experimental results show that optimal hybrid-chip CE separation efficiency can be achieved at S(ratio) =1.  相似文献   

16.
The paper reports the results of a study carried out to evaluate the use of three 1‐alkyl‐3‐methylimidazolium‐based ionic liquids as non‐covalent coating agents for bare fused‐silica capillaries and additives of the electrolyte solutions (BGE) for CE of basic proteins in the co‐EOF separation mode. The three ionic liquids are differentiated from each other by the length of the alkyl group on the imidazolium cation, consisting of either an ethyl, butyl or octyl substituent, whereas tetrafluoroborate is the common anionic component of the ionic liquids. Coating the capillary with the ionic liquid resulted in improved peak shape and protein separation, while the EOF was maintained cathodic. This indicates that each ionic liquid is effective at masking the protein interaction sites on the inner surface of the capillary, also when its adsorption onto the capillary wall has not completely neutralized all the negative charges arising from the ionization of the silanol groups and the ionic liquid is not incorporated into the BGE employed for separation. Using the coated capillaries with BGE containing the ionic liquid employed for the coating, at concentration low enough to maintaining the EOF cathodic, both peak shape and protein separation varied to different extents, based on the particular ionic liquid used and its concentration. Fast and efficient separation of the model basic protein mixture in co‐electroosmotic CE is obtained with the 1‐butyl‐3‐methylimidazolium tetrafluoroborate coated capillary and 100 mM acetate buffer (pH 4.0) containing 4.4 mM 1‐butyl‐3‐methylimidazolium tetrafluoroborate as the BGE.  相似文献   

17.
In this study, positively charged alkylaminosilyl monomers were used to modify the inner surface of fused silica capillaries, which subsequently were employed in capillary electrophoresis (CE) and capillary electrochromatography (CEC). The obtained surfaces yield a reversed electroosmotic flow (EOF) and have varying carbon chain lengths, that interact with the analytes and give chromatographic retention. The coating procedure is very simple and fast. The performance of the modified capillaries was evaluated regarding pH influence on EOF and chromatographic interactions. The experiments were conducted with UV and mass spectrometry (MS) and applied to the separation of various neuropeptides. The derivatized surfaces showed a linear (R(2) approximately 0.99) pH dependence with isoelectric points (pI) at 8.6-8.8. Rapid separations of peptide standards and a protein digest with efficiencies as high as 5 x 10(5) plates/m were performed.  相似文献   

18.
A fused-silica capillary that is wall-modified via chemically bonding a sulfonated polymer to the capillary wall has a uniform negative charge density on its surface and produces an electroosmotic flow (EOF) greater than 4 x 10(-4) cm2 V(-1) s(-1) The EOF is nearly independent of buffer pH over the pH range of 2 to 10 and is lower than the EOF obtained for the bare fused-silica capillary at the more basic pH but is higher at the more acidic buffer pH. Optimization of buffer pH can be based on analyte pKa values to improve the overall quality of the capillary zone electrophoresis (CZE) separation of complex mixtures of weak acid and base analytes. Because of the high EOF in an acidic buffer, the capillary is useful for the separation of weak organic bases which are in their cation forms in the acidic buffer. EOF for the sulfonic acid bonded phase capillary can be adjusted via buffer additives such as organic solvent, tetraalkylammonium salts, multivalent cations and alkylsulfonic acids. The advantages of utilizing buffer pH and the EOF buffer modifiers to enhance migration time, selectivity, and resolution in CZE separations with this capillary are illustrated using a series of test analyte mixtures of inorganic anions, carboxylic acids, alkylsulfonic acids, benzenesulfonic acids, sulfas, pyridines, anilines or small-chain peptides.  相似文献   

19.
The use of bare fused silica capillary in CE can sometimes be inconvenient due to undesirable effects including adsorption of sample or instability of the EOF. This can often be avoided by coating the inner surface of the capillary. In this work, we present and characterize two novel polyelectrolyte coatings (PECs) poly(2‐(methacryloyloxy)ethyl trimethylammonium iodide) (PMOTAI) and poly(3‐methyl‐1‐(4‐vinylbenzyl)‐imidazolium chloride) (PIL‐1) for CE. The coated capillaries were studied using a series of aqueous buffers of varying pH, ionic strength, and composition. Our results show that the investigated polyelectrolytes are usable as semi‐permanent (physically adsorbed) coatings with at least five runs stability before a short coating regeneration is necessary. Both PECs showed a considerably decreased stability at pH 11.0. The EOF was higher using Good's buffers than with sodium phosphate buffer at the same pH and ionic strength. The thickness of the PEC layers studied by quartz crystal microbalance was 0.83 and 0.52 nm for PMOTAI and PIL‐1, respectively. The hydrophobicity of the PEC layers was determined by analysis of a homologous series of alkyl benzoates and expressed as the distribution constants. Our result demonstrates that both PECs had comparable hydrophobicity, which enabled separation of compounds with log Po/w > 2. The ability to separate cationic drugs was shown with β‐blockers, compounds often misused in doping. Both coatings were also able to separate hydrolysis products of the ionic liquid 1,5‐diazabicyclo[4.3.0]non‐5‐ene acetate at highly acidic conditions, where bare fused silica capillaries failed to accomplish the separation.  相似文献   

20.
[2‐(Methacryloyl)oxyethyl]trimethylammonium chloride was successfully polymerized by surface‐initiated atom transfer radical polymerization method on the inner surface of fused‐silica capillaries resulting in a covalently bound poly([2‐(methacryloyl)oxyethyl]trimethylammonium chloride) coating. The coated capillaries provided in capillary electrophoresis an excellent run‐to‐run repeatability, capillary‐to‐capillary and day‐to‐day reproducibility. The capillaries worked reliably over 1 month with EOF repeatability below 0.5%. The positively charged coated capillaries were successfully applied to the capillary electrophoretic separation of three standard proteins and five β‐blockers with the separation efficiencies ranging from 132 000 to 303 000 plates/m, and from 82 000 to 189 000 plates/m, respectively. In addition, challenging high‐ and low‐density lipoprotein particles could be separated. The hydrodynamic sizes of free polymer chains in buffers used in the capillary electrophoretic experiments were measured for the characterization of the coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号