首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Redox reactions of solvated molecular species at gold‐electrode surfaces modified by electrochemically inactive self‐assembled molecular monolayers (SAMs) are found to be activated by introducing Au nanoparticles (NPs) covalently bound to the SAM to form a reactive Au–alkanedithiol–NP–molecule hybrid entity. The NP appears to relay long‐range electron transfer (ET) so that the rate of the redox reaction may be as efficient as directly on a bare Au electrode, even though the ET distance is increased by several nanometers. In this study, we have employed a fast redox reaction of surface‐confined 6‐(ferrocenyl) hexanethiol molecules and NPs of Au, Pt and Pd to address the dependence of the rate of ET through the hybrid on the particular NP metal. Cyclic voltammograms show an increasing difference in the peak‐to‐peak separation for NPs in the order Au<Pt<Pd, especially when the length of the alkanedithiol increases from octanedithiol to decanedithiol. The corresponding apparent rate constants, kapp, for decanedithiol are 1170, 360 and 14 s?1 for NPs of Au, Pt and Pd, respectively, indicating that the efficiency of NP mediation of the ET clearly depends on the nature of the NP. Based on a preliminary analysis rooted in interfacial electrochemical ET theory, combined with a simplified two‐step view of the NP coupling to the electrode and the molecule, this observation is referred to the density of electronic states of the NPs, reflected in a broadening of the molecular electron/NP bridge group levels and energy‐gap differences between the Fermi levels of the different metals.  相似文献   

2.
3.
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer‐by‐layer growth of Pt layers on Au NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(II) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air‐saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as‐prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring‐disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four‐electron reduction on the as‐prepared modified electrode with 5 Pt layers and first charge transfer is the rate‐determining step.  相似文献   

4.
《Electroanalysis》2017,29(3):898-906
Platinum nanoparticles (NPs) modified with undecafluorohexylamine (UFHA) and octylamine were synthesized as a novel model cathode catalyst for fuel cells. The modified Pt NPs were well characterized by FTIR, X‐ray photoelectron spectroscopy, thermogravimetric analysis, and transmission electron microscopy. These NPs supported on carbon black were applied as electrocatalysts for the oxygen reduction reaction. The UFHA‐modified Pt NP catalyst showed high electrocatalytic activity and durability compared to a commercial catalyst. Besides suppression of undesired oxide formation on the Pt surface, the affinity between the perfluorinated alkyl chains of UFHA and Nafion® improved the catalyst activity by creating a desirable proton conduction path. Additionally, UFHA modification improved durability by suppressing Pt dissolution and carbon corrosion because of restricted water accessibility. The β ‐oxide formation, which is responsible for Pt dissolution, was significantly attenuated by surface modification.  相似文献   

5.
A controlled composition‐based method—that is, the microwave‐assisted ethylene glycol (MEG) method—was successfully developed to prepare bimetallic PtxRu100?x/C nanoparticles (NPs) with different alloy compositions. This study highlights the impact of the variation in alloy composition of PtxRu100?x/C NPs on their alloying extent (structure) and subsequently their catalytic activity towards the methanol oxidation reaction (MOR). The alloying extent of these PtxRu100?x/C NPs has a strong influence on their Pt d‐band vacancy and Pt electroactive surface area (Pt ECSA); this relationship was systematically evaluated by using X‐ray absorption (XAS), scanning electron microscopy (SEM) coupled with energy dispersive X‐ray spectroscopy (EDX), transmission electron microscopy (TEM), density functional theory (DFT) calculations, and electrochemical analyses. The MOR activity depends on two effects that act in cooperation, namely, the number of active Pt sites and their activity. Here the number of active Pt sites is associated with the Pt ECSA value, whereas the Pt‐site activity is associated with the alloying extent and Pt d‐band vacancy (electronic) effects. Among the PtxRu100?x/C NPs with various Pt:Ru atomic ratios (x=25, 50, and 75), the Pt75Ru25/C NPs were shown to be superior in MOR activity on account of their favorable alloying extent, Pt d‐band vacancy, and Pt ECSA. This short study brings new insight into probing the synergistic effect on the surface reactivity of the PtxRu100?x/C NPs, and possibly other bimetallic Pt‐based alloy NPs.  相似文献   

6.
Silica nanoparticles (NPs) dispersed in an aerated aqueous solution containing Ag+ were irradiated to a dose of 10 kGy using 60Co γ-rays. The typical surface plasmon band of Ag NPs was observed around 400 nm, indicating that even in the presence of dissolved oxygen the reduction of Ag+ occurred by silica NPs. Transmission electron microscopy images indicated that Ag NPs formed on the surface of the silica NPs. The subtraction spectra showed broad absorption around 500 nm with the absorbance depending on the dose. The electrons generated by charge separation from silica NPs with a size of about 12 nm reduce Ag+ to Ag0 and form (Ag0) n species on the silica NPs, and the type of (Ag0) n species formed depended on the silica NP, and Ag+ contents, and the dose. In the co-presence of organic molecules on the silica NP such as rhodamine, the absorbance of the surface plasmon band of both Ag NPs and rhodamine decreased, indicating the electrons to participate in the reductive decomposition of rhodamine molecules adsorbed on the silica NP. Furthermore, in the case when the silica NPs contained fluorescein molecules, the fluorescein molecules were also decomposed, indicating that the fluorescein molecules adsorbed on the inner surface of the silica NPs. The addition of I2 as an oxidative reagent prevented the decomposition of the fluorescein molecules, indicating that electrons are the main species emitted from irradiated silica NPs.  相似文献   

7.
It is challenging to study the single semiconductor nanocrystal electrochemistry and photoelectrochemistry. The photocatalytic processes, such as the oxidation of methanol and iodide, that result from the electron–hole pair formed within a nanoparticle (NP) allow the detection of discrete current transient events assigned to single entities. Photocatalytic current amplification allows detection of collisions between the semiconductor NPs and the ultramicroelectrode that produce current transient. Staircase responses and blips in the i vs. t response indicate that irreversible and reversible NP/electrode interactions result depending on the experimental conditions. Dye sensitization increases the photocurrent magnitude of ZnO and TiO2 with respect to bare TiO2 NPs. The microelectrodes used are Pt, TiO2/Pt, TiO2/Au, and F-doped SnO2.  相似文献   

8.
LIU  Xueping  ZHOU  Zhenhua  ZHANG  Liangliang  TAN  Zhongyang  SHEN  Guoli  YU  Ruqin 《中国化学》2009,27(10):1855-1859
A simple and rapid colorimetric approach for the determination of adenosine has been developed via target inducing aptamer structure switching, thus leading to Au colloidal solution aggregation. In the absence of the analytes, the aptamer/gold nanoparticle (Au NP) solution remained well dispersed under a given high ionic strength condition in that the random‐coil aptamer was readily wrapped on the surface of the Au NPs, which resulted in the enhancement of the repulsive force between the nanoparticles due to the high negative charge density of DNA molecules. While in the presence of adenosine, target‐aptamer complexes were formed and the conformation of the aptamer was changed to a folded structure which disfavored its adsorption on the Au NP surface, thus leading to the reduction of the negative charge density on each Au NP and then the reduced degree of electrostatic repulsion between Au nanoparticles. As a result, the aggregation of the Au colloidal solution occurred. The changes of the absorption spectrum could be easily monitored by a UV‐Vis spectrophotometer. A linear correlation exists between the ratio of the absorbance of the system at 522 to 700 nm (A522 nm/A700 nm) and the concentration of adenosine between 100 nmol·L?1 and 10 µmol·L?1, with a detection limit of 51.5 nmol·L?1.  相似文献   

9.
Ion sensors based on colloidal nanoparticles (NPs), either as actively ion‐sensing NPs or as nanoscale carrier systems for organic ion‐sensing fluorescent chelators typically require a charged surface in order to be colloidally stable. We demonstrate that this surface charge significantly impacts the ion binding and affects the read‐out. Sensor read‐out should be thus not determined by the bulk ion concentration, but by the local ion concentration in the nano‐environment of the NP surface. We present a conclusive model corroborated by experimental data that reproduces the strong distance‐dependence of the effect. The experimental data are based on the capability of tuning the distance of a pH‐sensitive fluorophore to the surface of NPs in the nanometer (nm) range. This in turn allows for modification of the effective acid dissociation constant value (its logarithmic form, pKa) of analyte‐sensitive fluorophores by tuning their distance to the underlying colloidal NPs.  相似文献   

10.
Selective hydrogenation of substituted nitroarenes is an important reaction to obtain amines.Supported metal catalysts are wildly used in this reaction because the surface structure of supports can tune the properties of the supported metal nanoparticles (NPs) and promote the selectivity to amines.Herein,Pt NPs were immobilized on Fe OOH,Fe3O4andα-Fe2O3nanorods to synthesize a series of iron compounds supported Pt catalysts by liquid phase reduction me...  相似文献   

11.
Electrocatalysis of water oxidation by 1.54 nm IrOx nanoparticles (NPs) immobilized on spectroscopic graphite electrodes was demonstrated to proceed with a higher efficiency than on all other, hitherto reported, electrode supports. IrOx NPs were electrodeposited on the graphite surface, and their electrocatalytic activity for water oxidation was correlated with the surface concentrations of different redox states of IrOx as a function of the deposition time and potential. Under optimal conditions, the overpotential of the reaction was reduced to 0.21 V and the electrocatalytic current density was 43 mA cm?2 at 1 V versus Ag/AgCl (3 M KCl) and pH 7. These results beneficially compete with previously reported electrocatalytic oxidations of water by IrOx NPs electrodeposited onto glassy carbon and indium tin oxide electrodes and provide the basis for the further development of efficient IrOx NP‐based electrocatalysts immobilized on high‐surface‐area carbon electrode materials.  相似文献   

12.
Herein we report a facile and efficient method for self‐assembling noble‐metal nanoparticles (NPs) to the surface of SnO2‐coated carbon nanotubes (CNT@SnO2) to construct CNT@SnO2/noble metal NP hybrids. By using SnCl4 as the precursor of the SnO2 shell on the surface of CNTs, the hydrolysis speed of SnCl4 was slowed down in ethanol containing a trace amount of urea and water. The coaxial nanostructure of CNT@SnO2 was confirmed by using X‐ray powder diffraction (XRD) and transmission electron microscopy (TEM). It was found that the coating layer of SnO2 was homogeneous with the mean thickness of 8 nm. The CNT@SnO2/noble‐metal NP hybrids were obtained by mixing noble‐metal NPs with as‐prepared CNT@SnO2 coaxial nanocables by means of a self‐assembly strategy. With the amino group terminated, the CNT@SnO2 coaxial nanocable can readily adsorb the as‐prepared noble‐metal NPs (Au, Ag, Au? Pt, and Au? Pd NPs). The presence of an amino group at the surface of SnO2 was proved by use of X‐ray photoelectron spectroscopy (XPS). In addition, H2O2 sensing by amperometric methods could serve as detection models for investigating the electrocatalytic ability of as‐prepared hybrid materials. It was found that wide linear ranges and low detection limits were obtained by using the enzyme‐free CNT@SnO2@Au? Pt modified electrode, which indicated the potential utilizations of the hybrid based on CNT@SnO2 for electrochemical sensing.  相似文献   

13.
The interaction between metal nanoparticles (NPs) and their substrate plays a critical role in determining the particle morphology, distribution, and properties. The pronounced impact of a thin oxide coating on the dispersion of metal NPs on a carbon substrate is presented. Al2O3‐supported Pt NPs are compared to the direct synthesis of Pt NPs on bare carbon surfaces. Pt NPs with an average size of about 2 nm and a size distribution ranging between 0.5 nm and 4.0 nm are synthesized on the Al2O3 coated carbon nanofiber, a significant improvement compared to those directly synthesized on a bare carbon surface. First‐principles modeling verifies the stronger adsorption of Pt clusters on Al2O3 than on carbon, which attributes the formation of ultrafine Pt NPs. This strategy paves the way towards the rational design of NPs with enhanced dispersion and controlled particle size, which are promising in energy storage and electrocatalysis.  相似文献   

14.
It was recently reported that the reaction of methyl radicals with Pt0 nanoparticles (NPs), prepared by the reduction of Pt(SO4)2 with NaBH4, is fast and yields as the major product stable (Pt0‐NPs)?(CH3)n and as side products, in low yields, C2H6, C2H4, and some oligomers. We decided to study the effect of this coating on the properties of the Pt0‐NPs. The results show that the coating can cover up to 75 % of the surface Pt0 atoms. The rate constant of the reaction, k( . CH3+Pt0‐NPs), decreases with the increase in the surface coverage, leading to competing reaction paths in the solution, which gradually become dominant, affecting the composition of the products. The methyl coating also affects the zeta potential, the UV spectra, and the electrocatalytic reduction of water in the presence of the NPs. Thus, the results suggest that binding alkyl radicals to Pt0 surfaces might poison the NPs catalytic activity. When the Pt0‐NPs are prepared by the reduction of a different precursor salt, PtCl62?, nearly no C2H4 and oligomers are formed and the methyl coating covers a larger percentage of the surface Pt0 atoms. The difference is attributed to the morphology of the Pt0‐NPs: those prepared from Pt(SO4)2 are twinned nanocrystals, whereas those prepared from PtCl62? consist mostly of single crystals. Thus, the results indicate that the side products, or most of them at least, are formed on the twinned Pt0 nanocrystal edges created between (111) facets. In addition, the results show that Pt0‐NPs react very differently compared with other noble metals, for example, Au0 and Ag0; this difference is attributed in part to the difference in the bond strength, (M0‐NP)?CH3, and should be considered in heterogeneous catalytic processes involving alkyl radicals as intermediates.  相似文献   

15.
We investigated the effect of hard additives, that is, magnetic nanoparticles (NPs) and metal NPs, on the ordered morphology of block copolymers by varying the NP concentration. To characterize the structural changes of a block copolymer associated with different NP loadings, small-angle X-ray scattering and transmission electron microscopy were performed. Monodisperse maghemite (γ-Fe2O3) NPs (7 nm in diameter) and silver (Ag) NPs (6 nm in diameter) with surfaces modified with oleic acids were synthesized, and a cylinder-forming poly(styrene-block-isoprene) diblock copolymer was used as a structure-directing matrix for the NPs. As the NP concentration increased, domains of NP aggregates were observed for both magnetic and metal NPs. In the case of mixtures of cylinder-forming poly(styrene-block-isoprene) and Ag NPs with weak particle–particle interactions, random aggregates of Ag NPs were observed, and the ordered morphology of the block copolymer lost its long-range order with an increase in the NP concentration. However, regular, latticelike aggregates obtained with γ-Fe2O3 NPs, because of the strong interparticle interactions, induced an intriguing morphological transformation from hexagonal cylinders to body-centered-cubic spheres via undulated cylinders, whereas the neat block copolymer did not show such a morphological transition over a wide range of temperatures. The interplay between magnetic NPs and the block copolymer was also tested with magnetic NPs of different sizes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3571–3579, 2006  相似文献   

16.
A Cu–Pt nanoparticle catalyst supported on TiO2 nanowires (NWs) was prepared through regenerative counterion exchange–reduction using polyelectrolyte brush as template. Cationic polydimethyl aminoethyl methacrylate brushes were grafted onto TiO2 NWs. Cu–Pt nanocrystals were produced by anionic counterions CuCl42? and PtCl62? bound with the polymer brush through in situ reduction with NaBH4 of high density and low polydispersity. The as‐prepared TiO2 NWs/polymer brush/Cu–Pt was characterized by Fourier transform infrared spectroscopy (FT‐IR spectrometry), X‐ray photoelectron spectroscopy, transmission electron microscopy, and UV–Vis adsorption spectrometry analyses. Results showed that the highly dispersed Cu and Pt nanoparticles were present on the surface of the TiO2 NWs/polymer brush. The resultant TiO2 NWs/polymer brush/Cu–Pt exhibited extremely high catalytic activity and reduced p‐nitrophenol at room temperature. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
铂纳米线(Pt NWs)由于其独特的结构特点,比商业Pt/C具有更高的氧还原反应(ORR)比活性。在本工作中,我们将预先制备好的铂纳米颗粒(Pt NPs)引入到碳基体中,用于诱导生长Pt NWs,获得了均匀分布Pt NWs的阴极。通过改变Pt NP载量(0~0.015 mg·cm-2)和Pt NP来源(不同Pt含量的Pt/C)研究了所制备阴极的结构和性能。用扫描电镜对阴极表面进行了表征,并用透射电镜和X射线衍射分析了Pt NW的形貌和晶体结构。在单电池中分别进行了极化曲线和循环伏安曲线测试。当Pt NP来源为40% Pt/C且其载量为0.005 mg·cm-2时,制备的Pt NW阴极具有最佳的单电池性能和最大的电化学表面积(ECSA)。最后,提出了预制Pt NP影响Pt NWs分布的可能机制。  相似文献   

18.
Nanomaterial-based artificial enzymes have received great attention in recent year due to their potential application in immunoassay techniques. However, such potential is usually limited by poor dispersion stability or low catalytic activity induced by the capping agent essentially required in the synthesis. In an attempt to address these challenges, here, we studied the novel Pt nanoparticles (NPs) based peroxidase-like mimic by encapsulating Pt NP in mesoporous silica (Pt@mSiO2 NPs). Compared with other nanomaterial-based artificial enzymes, the obtained Pt@mSiO2 NPs not only exhibit high peroxidase-like activity but also have good dispersion stability in buffer saline solution when grafted with spacer PEG. Results show that when the thickness of silica shell is about 9 nm the resulting Pt@mSiO2 NPs exhibit the catalytic activity similar to that of Pt NPs, which is approximately 26 times higher than that of Fe3O4 NPs (in terms of Kcat for H2O2). Due to the protection of silica shell, the subsequent surface modification with antibody has little effect on their catalytic activity. The analytical performance of this system in detecting hCG shows that after 5 min incubation the limit of detection can reach 10 ng mL−1 and dynamic linear working range is 5–200 ng mL−1. Our findings pave the way for design and development of novel artificial enzyme labeling.  相似文献   

19.
In this work, hollow Au/Pt alloy nanoparticles (NPs) with porous surfaces were synthesized in a two-step procedure. In the first step, tri-component Ag/Au/Pt alloy NPs were synthesized through the galvanic replacement reaction between Ag NPs and aqueous solutions containing a mixture of HAuCl4 and H2PtCl4. In the second step, the Ag component was selectively dealloyed with nitric acid (HNO3), resulting in hollow di-component Au/Pt alloy NPs with a porous surface morphology. The atomic ratio of Au to Pt in the NPs was easily tunable by controlling the molar ratio of the precursor solution (HAuCl4 and H2PtCl6). Hollow, porous Au/Pt alloy NPs showed enhanced catalytic activity toward formic acid electrooxidation compared to the analogous pure Pt NPs. This improved activity can be attributable to the suppression of CO poisoning via the “ensemble” effect.  相似文献   

20.
We show that Pt nanoparticles synthesized on oxide nanocatalysts exhibit catalytic activity enhancement depending on the type of the oxide support. To synthesize the Pt/oxide nanocatalysts, we employed a versatile synthesis method using Pt nanoparticles (NPs) supported on various metal oxides (i.e., SiO2, CeO2, Al2O3, and FeAl2O4) utilizing ultrasonic spray pyrolysis. Catalytic CO oxidation was carried out on these catalysts, and it was found that the catalytic activity of the Pt NPs varied depending on the supporting oxide. While Pt/CeO2 exhibited the highest metal dispersion and active surface area, Pt/FeAl2O4 exhibited the lowest active surface area. Among the Pt/oxide nanocatalysts, Pt NPs supported on CeO2 showed the highest catalytic activity. We ascribe the enhancement in turnover frequency of the Pt/CeO2 nanocatalysts to strong metal–support interactions due to charge transport between the metal catalysts and the oxide support. Such Pt/oxide nanocatalysts synthesized via spray pyrolysis offer potential possibilities for large-scale synthesis of tailored catalytic systems for technologically relevant applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号