首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mimicking Nature by using synthetic molecules that resemble natural products may open avenues to key knowledge that is difficult to access by using substances from natural sources. In this context, a novel N‐acetylchitooligosaccharide analogue, β1,3‐N‐acetamido‐gluco‐pentasaccharide, has been designed and synthesized by using aminoglucose as the starting material. A phthalic group has been employed as the protecting group of the amine moiety, whereas a thioalkyl was used as the leaving group on the reducing end. The conformational properties of this new molecule have been explored and compared to those of the its chito analogue, with the β1,3 linkages, by a combined NMR spectroscopic/molecular modeling approach. Furthermore, the study of its molecular recognition properties towards two proteins, a lectin (wheat germ agglutinin) and one enzyme (a chitinase) have also been performed by using NMR spectroscopy and docking protocols. There are subtle differences in the conformational behavior of the mimetic versus the natural chitooligosaccharide, whereas this mimetic is still recognized by these two proteins and can act as a moderate inhibitor of chitin hydrolysis.  相似文献   

2.
Although a fairly large number of binary group 15/16 element cations have been reported, no example involving phosphorus in combination with a group 16 element has been synthesized and characterized to date. In this contribution is reported the synthesis and structural characterization of the first example of such a cation, namely a nortricyclane‐type [P3Se4]+. This cation has been independently discovered by three groups through three different synthetic routes, as described herein. The molecular and electronic structure of the [P3Se4]+ cage and its crystal properties in the solid state have been characterized comprehensively by using X‐ray diffraction, Raman, and nuclear magnetic resonance spectroscopies, as well as quantum chemical calculations.  相似文献   

3.
Magnéli phases TinO2n−1 (3<n≤10) are mixed Ti4+/Ti3+ oxides with high electrical conductivity. When used for water remediation or electrochemical energy storage and conversion, they are nanostructured and exposed to various environments. Therefore, understanding their surface reactivity is of prime importance. Such studies have been hindered by carbon contamination from syntheses. Herein, this synthetic and characterization challenge is addressed through a new approach to 50 nm carbon-free Ti4O7 and Ti6O11 nanoparticles. It takes advantage of the different reactivities of rutile and anatase TiO2 nanoparticles towards H2, to use the former as precursor of TinO2n−1 and the latter as a diluting agent. This approach is combined with silica templating to restrain particle growth. The surface reactivity of the Magnéli nanoparticles under different atmospheres was then evaluated quantitatively by synchrotron-radiation-based X-ray photoelectron spectroscopy, which revealed oxidized surfaces with lower conductivity than the core. This finding sheds a new light on the charge transfer occurring in these materials.  相似文献   

4.
The 4-anilino-6,7-ethylenedioxy-5-fluoroquinazoline scaffold is presented as a novel model system for the characterization of the weak NH⋅⋅⋅F hydrogen bonding (HB) interaction. In this scaffold, the aniline NH proton is forced into close proximity with the nearby fluorine (dH,F∼2.0 Å, ∠∼138°), and a through-space interaction is observed by NMR spectroscopy with couplings (1hJNH,F) of 19±1 Hz. A combination of experimental (NMR spectroscopy and X-ray crystallography) and theoretical methods (DFT calculations) were used for the characterization of this weak interaction. In particular, the effects of conformational rigidity and steric compression on coupling were investigated. This scaffold was used for the direct comparison of fluoride with methoxy as HB acceptors, and the susceptibility of the NH⋅⋅⋅F interaction to changes in electron distribution and resonance was probed by preparing a series of molecules with different electron-donating or -withdrawing groups in the positions para to the NH and F. The results support the idea that fluorine can act as a weak HB acceptor, and the HB strength can be modulated through additive and linear electronic substituent effects.  相似文献   

5.
The photophysical processes in a series of isocyano Re(I) phenanthroline complexes {[Re(CNR)n(CO)4-n(phen)](PF6); n=2, 3, 4, R=2,6-(iPr)2C6H3- or tBu- (n=2)} in acetonitrile have been studied by resonance Raman spectroscopy, transient resonance Raman spectroscopy, and femtosecond / nanosecond transient spectroscopy to elucidate the nature of their electronic transitions and emissive excited state(s). The kinetics of the intersystem crossing, vibrational relaxation and radiative decay of the metal-to-ligand charge transfer {MLCT [dπ(Re)→π*(phen)]} excited state have also been determined.  相似文献   

6.
Poly(triazine imide) with intercalation of lithium and chloride ions (PTI/Li+Cl?) was synthesized by temperature‐induced condensation of dicyandiamide in a eutectic mixture of lithium chloride and potassium chloride as solvent. By using this ionothermal approach the well‐known problem of insufficient crystallinity of carbon nitride (CN) condensation products could be overcome. The structural characterization of PTI/Li+Cl? resulted from a complementary approach using spectroscopic methods as well as different diffraction techniques. Due to the high crystallinity of PTI/Li+Cl? a structure solution from both powder X‐ray and electron diffraction patterns using direct methods was possible; this yielded a triazine‐based structure model, in contrast to the proposed fully condensed heptazine‐based structure that has been reported recently. Further information from solid‐state NMR and FTIR spectroscopy as well as high‐resolution TEM investigations was used for Rietveld refinement with a goodness‐of‐fit (χ2) of 5.035 and wRp=0.05937. PTI/Li+Cl? (P63cm (no. 185); a=846.82(10), c=675.02(9) pm) is a 2D network composed of essentially planar layers made up from imide‐bridged triazine units. Voids in these layers are stacked upon each other forming channels running parallel to [001], filled with Li+ and Cl? ions. The presence of salt ions in the nanocrystallites as well as the existence of sp2‐hybridized carbon and nitrogen atoms typical of graphitic structures was confirmed by electron energy‐loss spectroscopy (EELS) measurements. Solid‐state NMR spectroscopy investigations using 15N‐labeled PTI/Li+Cl? proved the absence of heptazine building blocks and NH2 groups and corroborated the highly condensed, triazine‐based structure model.  相似文献   

7.
We report on the characterization of dibenzo[cde,opq]rubicene (C30H14). The molecule was studied in solution at room temperature with absorption spectroscopy in the visible (vis) and ultraviolet (UV) wavelength ranges, and with emission spectroscopy. The infrared (IR), visible, ultraviolet, and vacuum ultraviolet (VUV) absorption spectra of a thin film were measured also at room temperature. In addition, the UV/vis absorption spectrum was measured at cryogenic temperatures using the matrix isolation spectroscopy technique. The interpretation of spectra was supported by theoretical calculations based on semiempirical and ab initio models, as well as on density functional theory. Finally, the results of the laboratory study were compared with interstellar spectra.  相似文献   

8.
Hyperpolarized magnetic resonance spectroscopy enables quantitative, non‐radioactive, real‐time measurement of imaging probe biodistribution and metabolism in vivo. Here, we investigate and report on the development and characterization of hyperpolarized acetylsalicylic acid (aspirin) and its use as a nuclear magnetic resonance (NMR) probe. Aspirin derivatives were synthesized with single‐ and double‐13C labels and hyperpolarized by dynamic nuclear polarization with 4.7 % and 3 % polarization, respectively. The longitudinal relaxation constants (T1) for the labeled acetyl and carboxyl carbonyls were approximately 30 seconds, supporting in vivo imaging and spectroscopy applications. In vitro hydrolysis, transacetylation, and albumin binding of hyperpolarized aspirin were readily monitored in real time by 13C‐NMR spectroscopy. Hyperpolarized, double‐labeled aspirin was well tolerated in mice and could be observed by both 13C‐MR imaging and 13C‐NMR spectroscopy in vivo.  相似文献   

9.
Tetrathiatriarylmethyl (TAM, trityl) radicals have found wide applications as spin probes/labels for EPR spectroscopy and imaging, and as polarizing agents for dynamic nuclear polarization. The high hydrophilicity of TAM radicals is essential for their biomedical applications. However, the synthesis of hydrophilic TAM radicals (e.g., OX063) is extremely challenging and has only been reported in the patent literature, to date. Herein, an efficient synthesis of a highly water-soluble TAM radical bis(8-carboxyl-2,2,6,6-tetramethylbenzo[1,2-d:4,5-d′]bis([1,3]dithiol-4-yl)-mono-(8-carboxyl-2,2,6,6-tetrakis(2-hydroxyethyl)benzo[1,2-d:4,5-d′]bis([1,3]dithiol-4-yl)methyl (TFO), which contains four additional hydroxylethyl groups, relative to the Finland trityl radical CT-03, is reported. Similar to OX063, TFO exhibits excellent properties, including high water solubility in phosphate buffer, low log P, low pKa, long relaxation times, and negligible binding with bovine serum albumin. On the other hand, TFO has a sharper EPR line and higher O2 sensitivity than those of OX063. Therefore, in combination with its facile synthesis, TFO should find wide applications in magnetic resonance related fields and this synthetic approach would shed new light on the synthesis of other hydrophilic TAM radicals.  相似文献   

10.
A straightforward synthetic route to produce tris(methacrylato)chromium(III), Cr(O2C(CH3)C=CH2)3, by reacting sodium methacrylate with an aqueous solution of CrCl3 gave a blue microcrystalline powder, insoluble in most common solvents. Electronic spectroscopy (UV-Vis), electron paramagnetic resonance (EPR), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), were employed to characterize Cr(O2C(CH3)C=CH2)3. Morphology and elemental composition of this compound were determined using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX), respectively. Spherical particles of approximately 2.5 µm in diameter were obtained. Thermal stability of the product was investigated via thermogravimetric analysis (TGA). The spectroscopic studies revealed that the coordination sphere around the chromium ion corresponds to a chelating bidentate carboxylate-Cr(III) complex. Thermal stability above 350°C, and spherical shape particles of few micrometers in diameter, suggest a potential application of this novel compound as a catalyst in oxidation reactions.  相似文献   

11.
The electrochemical synthesis of poly(p-phenylenevinylene) (PPV) and different modifications in the electronic distribution upon electrochemical p-doping (oxidation) and n-doping (reduction) of this polymer film have been studied in situ by resonance Raman spectroscopy, optical absorption spectroscopy and ESR spectroscopy. The polymer film has been prepared by electrochemical reduction of α,α,α′,α′-tetrabromo-p-xylene in dimethylformamide using tetraethylammonium tetrafluoroborate as the electrolyte salt. During electrochemical polymerization the position and relative intensities of the Raman bands change regularly as the chain length increases and finally converge on values reported for chemically prepared PPV. The Raman spectra for electrochemically polymerized PPV is compared to infrared-active vibration bands for electrochemically n-doped PPV. When the polymer undergoes redox reactions (doping-dedoping), shifts and broadening of Raman bands, compared to neutral PPV, are observed. Interpretation of the Raman spectra and the ESR results led to the conclusion that charge transfer in this system is mainly accomplished by polaron species formed upon doping of the polymer. In this reaction the quinoid structure is formed rather than the benzenoid structure. Electronic Publication  相似文献   

12.
The self‐assembly of polycatenar molecules derived from 1,6‐diphenyl‐3,4‐dipropyl‐3‐hexen‐1,5‐diyne has been studied in detail by solution NMR spectroscopy. The analysis of the concentration‐ and temperature‐dependent evolution of the chemical shifts and the diffusion coefficients in [D12]cyclohexane agrees well with an isodesmic model of association in this solvent. The association constants for the stacking and entropy and enthalpy of the process have been obtained. The driving force for the aggregation process is provided by a negative enthalpy (ΔH), which is partially compensated by a negative entropy (ΔS). A structural study of the self‐assembly in solution has been carried out with the help of NOESY NMR spectroscopic experiments.  相似文献   

13.
Herein, a short synthetic approach to linearly fused tricyclic enone 1 and cis-anti-cis type hydroxy-triquinane 2 has been described in an efficient manner by employing tandem-metathesis as a key step. The triquinane-based enone 1 is prepared by a Babler–Dauben oxidation of hydroxy-triquinane 2 , which is assembled by following a three-step sequence involving a regio- and stereoselective allylation, vinyl Grignard addition, and tandem-metathesis. Our strategy relies on exo-tricyclic ketone, which is derived from readily available exo-dicyclopentadiene-1-one. The newly synthesized molecules were identified and characterized by nuclear magnetic resonance spectroscopy (NMR), and high-resolution mass spectrometry (HRMS) data. It is worth mentioning that tricyclic enone 1 is present as a core unit of many naturally occurring polyquinanes, particularly xeromphalinone family members. Hence, our approach may be useful in the synthesis of such bioactive molecules.  相似文献   

14.
A detailed structural analysis of the copolyesterification in bulk without any external catalyst at 160°C between o-phthalic anhydride (P), oleic acid (O), and trimethylolpropane (T) with a mol ratio ([ COOH]/[ OH]) = 0.70 has been carried out by high resolution 13C nuclear magnetic resonance (13C-NMR) (DMSO-d6 and CDCl3 solutions), 1H nuclear magnetic resonance (1H-NMR) (CDCl3 solution), and by volumetry. The use of CDCl3 as NMR solvent has allow us to identify several signals that have been assigned to trimethylolpropane monoesters with different esterification degrees in the o-phthalate residue. Identically, we have detected signals assignable to monoesters at the chain ends in structures with different chain lengths. These monoesterified structures have been also confirmed by analyzing samples modified by the diazomethane addition. These modified samples have been also used to determine free acid groups as their methoxylic derivatives by 1H-NMR in CDCl3 solution. We have not observed any detectable signs of gelation nor products produced by secondary reactions. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3409–3429, 1997  相似文献   

15.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

16.
The rigidity of poly‐l ‐proline is an important contributor to the stability of many protein secondary structures, where it has been shown to strongly influence bulk flexibility. The experimental Young's moduli of two known poly‐l ‐proline helical forms, right‐handed all‐cis (Form I) and left‐handed all‐trans (Form II), were determined in the crystalline state by using an approach that combines terahertz time‐domain spectroscopy, X‐ray diffraction, and solid‐state density functional theory. Contrary to expectations, the helices were found to be considerably less rigid than many other natural and synthetic polymers, as well as differing greatly from each other, with Young's moduli of 4.9 and 9.6 GPa for Forms I and II, respectively.  相似文献   

17.
A new series of thermotropic phosphorus-based liquid crystalline (LC) dendrimers based on a thiophosphoryl-phenoxymethyl(methylhydrazono) core (thiophosphoryl-PMMH) up to the fifth generation has been synthesised by solution condensation of aldehyde groups, surface-functionalised thiophosphoryl-PMMH dendritic substrates of generation numbers G0.5 to G5.5, with the appropriate molar equivalents of the pro-mesogenic n-hexadecylaniline mono-functional building block. Their chemical composition has been confirmed by 1H/13C/31P nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, elemental analysis. Optical properties have been studied by ultraviolet-visible absorption, photoluminescence spectroscopy and polarised optical microscopy, and thermal characteristics by differential scanning calorimetry. Electrical studies have been made using the current-voltage characteristics of organic light-emitting diodes consisting of multi-layered indium tin oxide/dendrimer/aluminium tris(8-hydroxyquinoline)Al architecture. It has been demonstrated that the molecular engineering approach adopted can successfully lead to phosphorus-containing dendritic organic semiconductors (OSCs) which show tunable mesomorphic behaviour (extension of the observed smectic mesophase) and (opto) electronic properties, owing to their peripheral decoration with a tunable number of azomethine-based optically active chromophoric units. This rare combination of ‘tunable by design’ properties makes this series of thermostable thiophosphoryl-PMMH-based LC dendrimers a particularly appealing class of OSCs for use in optically and/or electronically active layers of (opto)electronic devices such as light-emitting diodes, field-effect transistors, solar cells and lasers.  相似文献   

18.
Thermal reactions of N‐benzylidene‐ and N‐(2‐pyridylmethylidene)‐tert‐butylamines ( 5 and 13 ) under FVT conditions have been investigated. Unexpectedly, at 800 °C, compound 5 yields 1,2‐dimethylindole and 3‐methylisoquinoline. In the reaction of 13 at 800 °C, 3‐methylimidazo[1,5‐a]pyridine was obtained as the major product. Mechanisms of these reactions have been proposed on the basis of DFT calculations. Furthermore, UV‐photoelectron spectroscopy combined with FVT has been applied for direct monitoring and characterization of the thermolysis products in situ.  相似文献   

19.
The small peptide derived from proline, N‐acetyl‐prolinamide (Ac‐Pro‐NH2), has been investigated using a combination of Fourier transform microwave spectroscopy with laser ablation. Spectral signatures belonging to only one conformer have been detected in the supersonic expansion. Rotational constants and nuclear quadrupole coupling constants of the two 14N nuclei have been used in the characterization of a γ‐turn structure in the gas phase, which is stabilized by a CO???HN intramolecular hydrogen bond closing a seven‐membered ring. A methyl group internal rotation barrier of 354 cm?1 has been determined from the analysis of the A–E splittings.  相似文献   

20.
The structure and flexibility of RNA depends sensitively on the microenvironment. Using pulsed electron-electron double-resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy combined with advanced labeling techniques, we show that the structure of double-stranded RNA (dsRNA) changes upon internalization into Xenopus lævis oocytes. Compared to dilute solution, the dsRNA A-helix is more compact in cells. We recapitulate this compaction in a densely crowded protein solution. Atomic-resolution molecular dynamics simulations of dsRNA semi-quantitatively capture the compaction, and identify non-specific electrostatic interactions between proteins and dsRNA as a possible driver of this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号