首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We construct a stochastic mechanics by replacing Bohm‧s first-order ordinary differential equation of motion with a stochastic differential equation where the stochastic process is defined by the set of Bohmian momentum time histories from an ensemble of particles. We show that, if the stochastic process is a purely random process with n-th order joint probability density in the form of products of delta functions, then the stochastic mechanics is equivalent to quantum mechanics in the sense that the former yields the same position probability density as the latter. However, for a particular non-purely random process, we show that the stochastic mechanics is not equivalent to quantum mechanics. Whether the equivalence between the stochastic mechanics and quantum mechanics holds for all purely random processes but breaks down for all non-purely random processes remains an open question.  相似文献   

2.
In classical stochastic theory, the joint probability distributions of a stochastic process obey by definition the Kolmogorov consistency conditions. Interpreting such a process as a sequence of physical measurements with probabilistic outcomes, these conditions reflect that the measurements do not alter the state of the underlying physical system. Prominently, this assumption has to be abandoned in the context of quantum mechanics, yet there are also classical processes in which measurements influence the measured system. Here, conditions that characterize uniquely classical processes that are probed by a reasonable class of such invasive measurements are derived. We then analyze under what circumstances such classical processes can simulate the statistics arising from quantum processes associated with informationally-complete measurements. It is expected that this investigation will help build a bridge between two fundamental traits of non-classicality, namely, coherence and contextuality.  相似文献   

3.
Quantum mechanics predicts correlation between spacelike separated events which is widely argued to violate the principle of local causality. By contrast, here we shall show that the Schrödinger equation with Born’s statistical interpretation of wave function and uncertainty relation can be derived from a statistical model of microscopic stochastic deviation from classical mechanics which is selected uniquely, up to a free parameter, by the principle of Local Causality. Quantization is thus argued to be physical and Planck constant acquires an interpretation as the average stochastic deviation from classical mechanics in a microscopic time scale. Unlike canonical quantization, the resulting quantum system always has a definite configuration all the time as in classical mechanics, fluctuating randomly along a continuous trajectory. The average of the relevant physical quantities over the distribution of the configuration are shown to be equal numerically to the quantum mechanical average of the corresponding Hermitian operators over a quantum state.  相似文献   

4.
A critique of the causla and classical stochastic interpretations of nonrelativistic quantum mechanics is presented. The only way that the classical stochastic formulation can be made compatible with the theory of quantum measurement is to extend the probability measure density for fluctuating paths to the complex domain. In doing so, we obtain the generalized stochiastic formulation in which the methods of classical probability theory can be used to describe the quantum mechanical phenomenon of interfering alternatives. Illustrative examples from quantum theory are used to show the complete compatibility between the traditional and generalized stochastic interpretations of quantum mechanics. Work supported in part by a contribution from the CNR.  相似文献   

5.
In this paper we reconsider, in the light of the Nelson stochastic mechanics, the idea originally proposed by Bohm and Vigier that arbitrary solutions of the evolution equation for the probability densities always relax in time toward the quantum mechanical density ¦¦2 derived from the Schrödinger equation. The analysis of a few general propositions and of some physical examples show that the choice of the L1 metrics and of the Nelson stochastic flux is correct for a particular class of quantum states, but cannot be adopted in general. This indicates that the question if the quantum mechanical densities attract other solution of the classical Fokker-Planck equations associated to the Schrödinger equation is physically meaningful, even if a classical probabilistic model good for every quantum stale is still not available. A few suggestion in this direction are finally discussed.Written in honor of J.-P. Vigier.  相似文献   

6.
We show that a point particle moving in space-time on entwined-pair paths generates Schrödinger’s equation in a static potential in the appropriate continuum limit. This provides a new realist context for the Schrödinger equation within the domain of classical stochastic processes. It also suggests that ‘self-quantizing’ systems may provide considerable insight into conventional quantum mechanics.  相似文献   

7.
The concept of probability space is generalized to that of stochastic probability space. This enables the introduction of representations of quantum mechanics on stochastic phase spaces. The resulting formulation of quantum statistical mechanics in terms of -distribution functions bears a remarkable resemblance to its classical counterpart. Furthermore, both classical and quantum statistical mechanics can be formulated in one and the same master Liouville space overL 2(). A joint derivation of a classical and quantum Boltzman equation provides an illustration of the practical uses of these formalisms.Supported in part by an NRC grant.  相似文献   

8.
We study the connection between operator ordering schemes and thec-number formulations of quantum mechanics, which are based on generating functionals and functional integrals. We show by explicit construction that different operator ordering schemes are related to different functional and functional integral formulations of quantum mechanics. The results of these considerations are applied to classical non-linear stochastic dynamics by using the formal analogy between the Fokker-Planck equation and the Schrödinger equation.  相似文献   

9.
A generalized Schrödinger equation containing correction terms to classical kinetic energy, has been derived in the complex vector space by considering an extended particle structure in stochastic electrodynamics with spin. The correction terms are obtained by considering the internal complex structure of the particle which is a consequence of stochastic average of particle oscillations in the zeropoint field. Hence, the generalised Schrödinger equation may be called stochastic Schrödinger equation. It is found that the second order correction terms are similar to corresponding relativistic corrections. When higher order correction terms are neglected, the stochastic Schrödinger equation reduces to normal Schrödinger equation. It is found that the Schrödinger equation contains an internal structure in disguise and that can be revealed in the form of internal kinetic energy. The internal kinetic energy is found to be equal to the quantum potential obtained in the Madelung fluid theory or Bohm statistical theory. In the rest frame of the particle, the stochastic Schrödinger equation reduces to a Dirac type equation and its Lorentz boost gives the Dirac equation. Finally, the relativistic Klein–Gordon equation is derived by squaring the stochastic Schrödinger equation. The theory elucidates a logical understanding of classical approach to quantum mechanical foundations.  相似文献   

10.
A formal but not conventional equivalence between stochastic processes in nonequilibrium statistical thermodynamics and Schrödinger dynamics in quantum mechanics is shown. It is found, for each stochastic process described by a stochastic differential equation of Itô type, there exists a Schrödinger-like dynamics in which the absolute square of a wavefunction gives us the same probability distribution as the original stochastic process. In utilizing this equivalence between them, that is, rewriting the stochastic differential equation by an equivalent Schrödinger equation, it is possible to obtain the notion of deterministic limit of the stochastic process as a semi-classical limit of the “Schrödinger” equation. The deterministic limit thus obtained improves the conventional deterministic approximation in the sense of Onsager-Machlup. The present approach is valid for a general class of stochastic equations where local drifts and diffusion coefficients depend on the position. Two concrete examples are given. It should be noticed that the approach in the present form has nothing to do with the conventional one where only a formal similarity between the Fokker-Planck equation and the Schrödinger equation is considered.  相似文献   

11.
We present the main results of a variational calculus for Markovian stochastic processes which allows us to characterize the dynamics of probabilistic systems by extremal properties for some functionals of processes. They generalize, by construction, the main variational formulations of classical dynamics. This framework is used for the dynamical analysis of Nelson's stochastic mechanics, an approach to quantum mechanics in which the concept of trajectory for particles still makes sense. The semiclassical limit is formulated in terms of the second variation of the starting functional. We also use the proposed stochastic calculus of variations in the context of statistical mechanics of systems far from equilibrium, namely, to solve the Onsager-Machlup problem.On leave from Département de Physique Théorique, Université de Genève, CH-I2II, Genève 4, Switzerland.  相似文献   

12.
13.
Following Schrödinger a stochastic interpretation of quantum mechanics is given based on the introduction of an intermediate probability in diffusion processes. The Schrödinger equation is derived following Nelson's approach and following a variational approach. Some problems of the quantum theory of measurement are discussed.  相似文献   

14.
A procedure is given for the transformation of quantum mechanical operator equations into stochastic equations. The stochastic equations reveal a simple correlation between quantum mechanics and classical mechanics: Quantum mechanics operates with “optimal estimations,” classical mechanics is the limit of “complete information.” In this connection, Schrödinger's substitution relationsp x → -i? ?/?x, etc, reveal themselves as exact mathematical transformation formulas. The stochastic version of quantum mechanical equations provides an explanation for the difficulties in correlating quantum mechanics and the theory of relativity: In physics “time” is always thought of as a numerical parameter; but in the present formalism of physics “time” is described by two formally totally different quantities. One of these two “times” is a numerical parameter and the other a random variable. This last concept of time shows all the properties required by the theory of relativity and is therefore to be considered as the relativistic time.  相似文献   

15.
We show that there is a close relationship between quantum mechanics and ordinary probability theory. The main difference is that in quantum mechanics the probability is computed in terms of an amplitude function, while in probability theory a probability distribution is used. Applying this idea, we then construct an amplitude model for quantum mechanics on phase space. In this model, states are represented by amplitude functions and observables are represented by functions on phase space. If we now postulate a conjugation condition, the model provides the same predictions as conventional quantum mechanics. In particular, we obtain the usual quantum marginal probabilities, conditional probabilities and expectations. The commutation relations and uncertainty principle also follow. Moreover Schrödinger's equation is shown to be an averaged version of Hamilton's equation in classical mechanics.  相似文献   

16.
We discuss the coupling of a quantum system through the angular momentum to the reservoir of quantum harmonic oscillators. In classical mechanics an observation of the oscillator trajectories allows one to determine the system's angular momentum. We discuss the quantum dynamics of the model. We show that the model of an observation of environmental coordinates can be related to some models of angular momentum measurement based on a stochastic Schrödinger equation.  相似文献   

17.
Ichiro Ohba 《Pramana》2002,59(2):397-404
From the advent of quantum mechanics, various types of stochastic-dynamical approach to quantum mechanics have been tried. We discuss how to utilize Nelson’s stochastic quantum mechanics to analyze the tunneling phenomena, how to derive relativistic field equations via the Poisson process and how to describe a quantum dynamics of open systems by the use of quantum state diffusion, or the stochastic Schrödinger equation.  相似文献   

18.
We review the properties of supersymmetric quantum mechanics for a class of models proposed by Witten. Using both Hamiltonian and path integral formulations, we give general conditions for which supersymmetry is broken (unbroken) by quantum fluctuations. The spectrum of states is discussed, and a virial theorem is derived for the energy. We also show that the euclidean path integral for supersymmetric quantum mechanics is equivalent to a classical stochastic process when the supersymmetry is unbroken (E0 = 0). By solving a Fokker-Planck equation for the classical probability distribution, we find Pc(y) is identical to |Ψ0(y)|2 in the quantum theory.  相似文献   

19.
G.N. Ord 《Annals of Physics》2009,324(6):1211-1218
Conventional quantum mechanics specifies the mathematical properties of wavefunctions and relates them to physical experiments by invoking the Born postulate. There is no known direct connection between wavefunctions and any external physical object. However, in the case of a two-dimensional spacetime there is a completely classical context for wavefunctions where the connection with an external reality is transparent and unambiguous. By examining this case, we show how a classical stochastic process assembles a Dirac wavefunction based solely on the detailed counting of reversible paths. A direct comparison of how a related process assembles a Probability Density Function reveals both how and why PDFs and wavefunctions differ, including the ubiquitous implication of complex numbers for the latter. The appearance of wavefunctions in a context that is free of the complexities of quantum mechanics suggests the study of such models may shed some light on interpretive issues.  相似文献   

20.
The electron is conceived here as a complex structure composed of a subparticle that is bound to a nearly circular motion. Although in quantum mechanics the spin is not representable, in classical stochastic physics this corresponds to the angular momentum of the subparticle. In fact, assuming Schrödinger-type hydrodynamic equations of motion for the subparticle, the spin-1/2 representation in configuration space and the corresponding Pauli matrices for the electron are obtained. The Hamiltonian of Pauli's theory as the nonrelativistic limit of Dirac's equation is also derived.On sabbatical leave from Universidad de Los Andes, Merida, 5101 Venezuela.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号