首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
孙彬  吕建华  金晶  赵桂艳 《应用化学》2020,37(10):1127-1136
石英晶体微天平(QCM)是一种基于石英晶体压电效应的分析检测技术,可实时在线提供石英晶体表面吸附层质量、厚度、粘弹性等信息,由此获得表面分子相互作用关系。 耗散型石英晶体微天平(QCM-D)因其独特的对粘弹性的解析,使其在高分子材料中的应用迅速发展,尤其是生物医用高分子材料领域,已用来评价生物医用高分子材料的表界面相互作用,力学和生物相容性等。 本文简单介绍了耗散型石英晶体微天平的基本原理及理论模型,重点综述了近几年QCM-D在高分子链构象、蛋白质吸附、生物大分子相互作用、药物释放以及水凝胶中的应用,并且展望了QCM-D的未来发展趋势。  相似文献   

2.
固/液界面上高分子的行为直接影响着界面的物理和化学性质.对于高分子在界面的动态行为,由于缺乏有效的手段,检测一直十分困难.最近,一种频率-耗散联用型石英晶体微天平(QCM-D)问世,它能够同时检测固/液界面上有关高分子质量和结构的变化,因而可应用于界面高分子研究的多个方面.本文介绍石英晶体微天平的基本原理,并综述作者实验室最近几年利用QCM-D开展的若干工作,包括固/液界面上高分子链的构象变化,固/液界面上高分子的吸附,高分子降解动力学和聚电解质的"层层组装"等方面.  相似文献   

3.
石英晶体微天平(Quartz crystal microbalance,QCM)是一种具有灵敏度高、免标记、可实时在线检测等优点的重要分析工具。在生物检测领域,QCM与多种信号放大方法相结合,广泛应用于对生物分子的高灵敏检测。新型耗散型QCM(QCM-D)通过对薄膜厚度、粘弹性等的研究,主要用于考察生物分子的吸附分离、构型变化等微观过程。本文主要阐述了QCM及QCM-D生物传感器的构建及其在DNA、蛋白质、细胞和微生物检测中的研究进展。  相似文献   

4.
石英晶体微天平在聚合物薄膜研究中的应用与展望   总被引:2,自引:0,他引:2  
石英晶体微天平仪(QCM)具有高度的灵敏性,能够对石英晶片表面微痕量物质的变化产生响应,在分析科学研究中广泛应用.本文阐述了QCM的基本工作原理和应用基础方程,并在此基础上综述了近年来QCM在聚合物薄膜研究中的应用及研究进展,包括QCM对聚合物薄膜的厚度和力学性能的测量、QCM研究聚合物分子链在石英晶片表面的吸附过程和链构象变化、表面引发生长聚合物刷的动力学过程、基于功能聚合物薄膜和QCM的生物与化学传感器等,同时对QCM在聚合物薄膜研究领域的进一步深入应用进行了展望.  相似文献   

5.
近几年,石英晶体微天平(QCM)作为一种简易、灵敏的实时监测手段,广泛地应用于研究生物活性分子之间的相互作用,其中包括蛋白质吸附动力学、抗原/抗体相互作用、DNA杂交、适配体-蛋白相互作用等领域.但是QCM作为商业化的生物传感器一直发展不顺利.主要因为QCM在液态环境中的非理想行为导致了对QCM数据分析困难.我们利用阻抗分析法对QCM的数据进行分析,分离出质量和粘弹性两种因素引起的频率改变,解决粘弹性的困扰问题.同时,我们提出了"固化水层"模型,合理地处理了溶剂的影响.在该模型的基础上发展了一种基于QCM的分子尺技术,该技术能够简便、有效地测量出固定在固-液界面的生物大分子的纳米尺寸.我们的主要工作是将"固化水层"模型拓展到三维结构的高分子基质中.我们联合QCM和表面等离子共振(SPR)技术研究基于高分子基质的蛋白质的固定,抗原/抗体识别的过程,进一步采用"固化水层"模型解释高分子的溶胀行为、羧基活化、抗体固定、抗原、抗体识别等过程.理论分析表明,结合生物分子势必排出相同体积的溶剂,由于溶剂的密度接近于蛋白质溶液的密度.从而导致"固化水层"质量增加不明显.实验上也证实了石英晶体微天平的响应主要取决于"固化水层"的厚度变化(T2-T1),而并非固定的生物分子的质量.我们利用QCM实时监测在高分子基质中IgG的固定以及IgG与anti-IgG识别的过程,并将石英晶体微天平监测的频率变化与相应的厚度变化直接关联.这一方法的建立在一定的应用范围内简化了QCM的定量分析模型,有望实现QCM作为传感器在界面物理与化学等相关领域研究中的应用.  相似文献   

6.
《分析化学》2009,37(5)
石英晶体微天平仪(quartz crystal microbalance,QCM)就是通过检测物质在石英晶片表面上吸附前后石英晶片共振性能的变化以得到吸附物质的量和一些物理性能。石英晶体微天平仪具有非常高的灵敏度,可以测到纳米级的薄膜厚度变化和纳克级的痕量物质质量的变化,广泛应用于科学研究各个领域中,特别是薄膜质量、厚度的测量,生物、化学传感器以及微量物质在表面的吸附过程研究。  相似文献   

7.
石英晶体微天平(QCM)作为纳克级的质量传感器,可通过测定石英晶体振动频率的变化来测定石英晶体表面微小的质量变化.近年来,电化学石英晶体微天平(EQCM)技术已广泛应用于电化学研究领域[1].在锂嵌入型电极充放电过程中,锂离子在嵌基材料中嵌入脱出会引起电极质量的微小变化,因而利用EQCM技术研究Li+的嵌入脱出过程有其独到之处.  相似文献   

8.
电化学石英晶体微天平研究普鲁士蓝修饰电极   总被引:2,自引:0,他引:2  
石英晶体徽天平(Quartz Crystal Microbalance,简称QCM)是一种非常灵敏的质量传感器,其检测能力可达ng级。QCM在化学中的早期应用是检测大气中的徽量成分,目前仍较活跃。由于石英压电晶体浸入溶液后在晶体/溶液界面存在较大的能量损失而不能够稳定振荡,致使QCM的应用较长时间局限于气相。八十年代初石英压电晶体在液相中的振荡终获成功,开辟了QCM应用的一个全新领域。液相中振荡成功后,QCM很快应用于电化学研究。目前已发展成为一种全新的电化学传感器——电化学石英晶体微天平(EQCM),并已用于金属电沉积、电化学腐蚀、电分析等方面的研究。  相似文献   

9.
电化学石英晶体微天平(EQCM)即石英晶体微天平(QCM)与电化学检测相结合的测试技术。电化学石英晶体微天平以其简单、快速,可以在纳克级水平上对活性物质在石英晶振片上发生的沉积、吸附或溶解等过程进行动态检测等优势而成为表界面反应研究的有效手段之一。由于EQCM测试技术为原位测试方法,可以实现在线实时监测,利用其高精度和高灵敏度可以进一步对表界面上发生反应的过程及深层次的机理进行分析。本文就EQCM在电化学、生物医学及油田化学等领域以及研究机理及动力学等方面的应用进行了总结阐述,提出了EQCM的研究新方向以及发展中面临的问题。  相似文献   

10.
石英晶体微天平(Quartz Crystal Microbalance,QCM)技术是免标记和实时在线表征及研究分子间相互作用的重要工具。近年来在分子生物学、疾病诊断、药物分析、环境监测等研究领域引起广泛关注。本文评述了2011年以来QCM生物传感体系构建及其在分析应用中的研究进展,并对QCM技术在生物传感领域的未来研究动向进行了展望。  相似文献   

11.
石英晶体微天平(quartz crystal microbalance,QCM)是一种对界面变化敏感的仪器,它已经在物理、化学、生物学、药物学、临床医学、环境科学等学科的界面问题研究中得到了一定的应用.然而,QCM在液相下的应用和推广一直受限于QCM数据定量解释的困难.为此,科研工作者发展了多种高级的QCM,比如带阻抗分析功能的QCM(impedance QCM,i-QCM)或带能量耗散监测功能的QCM(QCM with dissipation,QCM-D),同时还发展了许多相应的理论模型.但是,对于多数生物、化学工作者来说,这些理论过于复杂.这极大地限制了QCM的推广和潜力发挥.本文以我们小组在QCM方面的研究工作为线索,对已报道的分析方法、模型和方程按5类应用条件进行了整理,给出了明确的界定标准:它们是:1,固-气界面;2,牛顿流体;3,固-液界面的薄膜;4,固-液界面厚膜;5,固-液界面超厚膜.对于每一类情况,我们将用通俗易懂的语言描述如何对QCM数据进行简化却又保证研究精度需要的定量分析.对于液态环境下的QCM数据的分析,我们着重介绍了"固化水层"模型,该模型允许QCM在一定的条件下成为一把"分子尺",工作范围从几个纳米到数百纳米.该分子尺在多个创新界面问题研究中得到很好的应用.最后,我们从理论上分析了QCM作为生物传感器的先天缺陷--因基于面均质量检测的原理,QCM技术对溶液中蛋白的检测下限仅在1μg mL-1数量级.进一步,我们探索了QCM的发展方向和潜在应用领域,希望籍此能进一步推广QCM在各个学科界面问题中的研究应用.  相似文献   

12.
电化学石英晶体微天平(EQCM)同时结合了电化学检测的高灵敏度和石英晶体微天平(QCM)可实时检测电极表面质量变化及阻尼的特点,在电化学研究中具有非常好的应用前景,已得到越来越广泛的应用.本文设计了一种通用型的EQCM电解池,用恒电流电沉积铜的方法测定了QCM Pt电极的质量灵敏因子Cf,分析了Cf实验测定值与理论值偏差的原因,并讨论了在所设计的EQCM电解池中QCM Pt电极的使用范围,为进一步开展EQCM的应用研究提供可靠的基础.  相似文献   

13.
石英晶体微天平(quartz crystal microbalance,QCM)是一种对质量变化敏感的器件,具有灵敏度高、成本低廉、操作简单、可实时在线检测等优点,在气体传感领域受到了广泛关注。敏感材料是石英晶体微天平气体传感器的关键组成部分,本文综述了不同敏感材料包括有机聚合物、超分子化合物、离子液体和分子液体以及近年来备受关注的纳米材料修饰的QCM对特定气体传感检测的研究现状,详细介绍了纳米材料为敏感膜的QCM气体传感器对不同气体传感检测的研究现状及相关敏感机理。最后,在国内外研究现状的基础上,展望了敏感材料的发展前景。QCM作为一种成本低廉、操作方便、测量精度高的气体传感检测器件,将会有更加广阔的应用前景。  相似文献   

14.
石英晶体微天平(QCM)及其在电化学研究中的应用   总被引:4,自引:0,他引:4  
本文文献综述近年来发展起来的石英晶体微天平(QCM)技术的理论、实验方法和它在电化学研究中应用的概况。  相似文献   

15.
基于石英晶体微天平(Quartz Crystal Microbalance, QCM)技术, 建立了一种测定气体在离子液体(ILs)中基本热力学参数的方法. 测定了5种可挥发有机物(VOCs)在6种咪唑类离子液体中的亨利常数, 并对可能的作用机理进行了探讨. 结果表明, QCM技术可以作为研究离子液体溶解性和作用规律的有效方法.  相似文献   

16.
建立环介导恒温扩增(LAMP)-石英晶体微天平(QCM)原位快速检测核酸的方法。将环介导恒温核酸扩增(LAMP)技术与石英晶体微天平(QCM)技术相结合,采用巯基化试剂分子组装方法,将LAMP反应体系中的4个引物之一固定于QCM电极上,在安装所述电极的QCM检测池中配置LAMP反应体系并进行环介导恒温核酸扩增,用QCM仪器在线原位检测频率变化,判断LAMP反应是否发生,进而判断体系中是否存在目标核酸特异基因。该方法检测核酸特异性强、灵敏度高,并且操作简便,有望发展成为快速筛查检测核酸的有效手段。  相似文献   

17.
石英压电晶体(QCM)因为具有很好的质量效应,使其在分析化学等领域中已经得到了广泛的应用~([1,2]),它也因此获得了微天平的称号.然而,在文献调研过程中我们发现,QCM更多地被用于表明修饰的表征而不是定量分析.原因在于,Sauerbrey方程~([3])揭示的是晶体频率变化与晶体表面吸附量之间的关系,而不是与待测组分的浓度之间的关系.  相似文献   

18.
利用聚多巴胺技术对PTFE进行表面改性,X射线光电子能谱(XPS)、椭偏、接触角以及石英晶体微天平(QCM-D)证实DOPA分子可以在PTFE表面自聚形成反应性的超薄膜功能涂层,并通过聚多巴胺辅助自组装单分子层(SAM)技术构建了活性多肽链段CGREDVDY的界面.细胞黏附实验反映活性链段CGREDVDY的修饰表面具备良好的内皮细胞选择性黏附能力.这种具有内皮细胞选择性黏附能力的界面有望实现材料在复杂生理环境中对内皮细胞的原位诱导,为制备具有血管内皮原位快速愈合功能的新型血液相容性人造血管提供新途径.  相似文献   

19.
石英晶体微天平(quartz crystal microbalance, QCM)是一种质量敏感型传感器,近年来被广泛应用于多个领域的分析检测.为了进一步提高检测灵敏度,开发了多种QCM信号放大方法.本文综合介绍了各种QCM信号放大方法,主要聚焦于肿瘤标志物检测中的应用,涉及对核酸序列、蛋白以及肿瘤细胞的检测. QCM的信号放大方法主要是基于质量放大的原理,主要放大技术包括:生物分子偶联、纳米颗粒偶联、生物催化产生不溶物沉淀、金属还原沉积、DNA复制/杂交、晶体原位生长.质量放大子的设计和使用大大增强了QCM的检测能力,提高了其检测灵敏度,拓宽了QCM的应用范围.  相似文献   

20.
王萍  葛志磊  裴昊  王丽华  樊春海 《化学学报》2012,70(20):2127-2132
通过石英晶体振荡技术研究了杂交链式反应这种核酸扩增的方法. 石英晶体微天平可以表征在晶体和溶液的界面上的DNA层, 并获得粘性穿透深度这一重要参数. 根据石英晶体表面吸附质量和振荡频率之间的关系, 我们测量了表面引发的杂交链式反应的动力学过程, 并获得界面上的粘度、剪切模量等参数. 这一工作为研究固液界面上核酸反应过程, 特别是杂交链式反应的机制提供了新的途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号