首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hexagonal boron nitride (BN) platelets, also known as white graphite, are often used to improve the thermal conductivities of polymeric matrices. Due to the poor interfacial compatibility between BN platelets and polymeric matrices, in this study, polyrhodanine (PRd) was used to modify BN platelets and prepared functionalized BN-PRd platelets, thereby enhancing the interfacial interaction between the thermal conductive filler and polymeric matrix. Then, BN-PRd platelets were dispersed into the nitrile butadiene rubber (NBR) matrix to yield high thermally conductive composites. The presence of N? C═S groups in PRd allowed the combination of PRd and NBR chains containing stable covalent bonds via vulcanization reaction. The thermal conductivity of the as-prepared 30 vol% BN-PRd/NBR composite reached 0.40 W/mK, representing an increment of 135% over pure NBR (0.17 W/mK). In addition, the largest tensile strength of NBR composite containing 30 vol% BN-PRd platelets was 880% times of pure NBR. The 30 vol% BN-PRd/NBR composite also displayed a relatively high dielectric constant (9.35 at 100 Hz) and a low dielectric loss tangent value (0.07 at 100 Hz), indicating their usefulness as dielectric flexible materials of microelectronics. In sum, the simplicity and good efficiency of formation of covalent bonds between boron nitride and rubber chains look very promising for large-scale industrial production of high thermally conductive composites.  相似文献   

2.
Acrylonitrile‐butadiene rubber (NBR) composites filled with co‐precipitates of black liquor and montmorillonite (CLM) were prepared by mechanical mixing on a two‐roll mill. The cure characteristics, mechanical properties, thermal properties, and thermo‐oxidative aging properties of NBR/CLM composites were evaluated. Scanning electron microscopy and transmission electron microscopy showed that the filler particles were well dispersed in the NBR/CLM composites. The scorch time and optimum cure time increase with increasing filler loading. A remarkable enhancement in tensile strength, elongation at break, 300% modulus, and shore “A” hardness was also observed. When the loading of CLM was 40 parts per hundred rubbers, it showed about seven times increase in tensile strength, about 1.8 times increase in elongation at break, about three times increase in 300% modulus, and about 1.3 times increase in shore A hardness, respectively, as compared with those of pure cured NBR. Thermal properties and thermal oxidative aging properties, in general, were also improved with loading of this novel filler. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The main objective of the present study was to investigate the synergistic effect of simultaneous use of two reinforcing fillers in rubber compounds based on acrylonitrile-butadiene copolymer (NBR). Silica was used as reinforcing filler in all samples and the loading content was 25 phr. 3 and 5 phr of multiwall carbon nanotubes (MWCNT) were used as second reinforcing filler in NBR/silica compounds. Melt mixing method was employed for compound preparation. The effects of carbon nanotube/silica hybrid filler on mechanical and vulcanization characteristics of the rubber compounds were investigated. These results revealed that addition of the reinforcing filler, either carbon nanotube or silica, shortened the optimum cure time (t90) and also scorch time (ts1) of samples compared to that of pure NBR compound. In hybrid compounds, the reduction in optimum cure time and scorch time was higher than that of for silica-filled NBR or CNT-filled NBR compounds. This can be attributed to the synergistic effect between CNT and silica as two reinforcing agents in NBR compounds. Regardless the composition of the reinforcing filler, an increase of the relaxed storage modulus is observed, while the tan δ value is decreased steadily. The dynamic modulus reinforcement of nanocomposites was examined by the Guth Gold and Modified Guth Gold equations. For hybrid samples, the experimental values show a significant positive deviation from model predictions. According to the Barlow’s formula, hybrid compounds show higher burst strength compared to silica or CNT filled NBR compounds.  相似文献   

4.
《先进技术聚合物》2018,29(6):1661-1669
Recently, carbon nanofibers have become an innovative reinforcing filler that has drawn increased attention from researchers. In this work, the reinforcement of acrylonitrile butadiene rubber (NBR) with carbon nanofibers (CNFs) was studied to determine the potential of carbon nanofibers as reinforcing filler in rubber technology. Furthermore, the performance of NBR compounds filled with carbon nanofibers was compared with the composites containing carbon black characterized by spherical particle type. Filler dispersion in elastomer matrix plays an essential role in polymer reinforcement, so we also analyzed the influence of dispersing agents on the performance of NBR composites. We applied several types of dispersing agents: anionic, cationic, nonionic, and ionic liquids. The fillers were characterized by dibutylphtalate absorption analysis, aggregate size, and rheological properties of filler suspensions. The vulcanization kinetics of rubber compounds, crosslink density, mechanical properties, hysteresis, and conductive properties of vulcanizates were also investigated. Moreover, scanning electron microscopy images were used to determine the filler dispersion in the elastomer matrix. The incorporation of the carbon nanofibers has a superior influence on the tensile strength of NBR compared with the samples containing carbon black. It was observed that addition of studied dispersing agents affected the performance of NBR/CNF and NBR/carbon black materials. Especially, the application of nonylphenyl poly(ethylene glycol) ether and 1‐butyl‐3‐methylimidazolium tetrafluoroborate contributed to enhanced mechanical properties and electrical conductivity of NBR/CNF composites.  相似文献   

5.
Rubber blend of acrylonitrile butadiene rubber (NBR) and ethylene-propylene diene monomer (EPDM) rubber (50/50) has been loaded with increasing contents, up to 100 phr, of reinforcing filler, namely, high abrasion furnace (HAF) carbon black. Prepared composites have been subjected to gamma radiation doses up to 250 kGy to induce radiation vulcanization under atmospheric conditions. Mechanical properties, namely, tensile strength (TS), tensile modulus at 100% elongation (M100), and hardness have been followed up as a function of irradiation dose and degree of loading with filler. On the other hand, variation of the swelling number as a physical property, as a function of same parameters, however, in car oil as well as brake oil has been undertaken. In addition, the electrical properties of prepared composites, namely, their electrical conductivity, were also evaluated. The thermal behavior of the prepared composites was also investigated. The results obtained indicate that improvement has been attained in different properties of loaded NBR/EPDM composites with respect to unloaded ones.  相似文献   

6.
The effects of the partial replacement of silica or calcium carbonate (CaCO3) by bentonite (Bt) on the curing behaviour, tensile and dynamic mechanical properties and morphological characteristics of ethylene propylene diene monomer (EPDM) composites were studied. EPDM/silica/Bt and EPDM/CaCO3/Bt composites containing five different EPDM/filler/Bt loadings (i.e., 100/30/0, 100/25/5, 100/15/15, 100/5/25 and 100/0/30 parts per hundred rubber (phr)) were prepared using a laboratory scale two-roll mill. Results show that the optimum cure (t90) and scorch (tS2) time decreased, while the cure rate index (CRI) increased for both composites with increasing Bt loading. The tensile properties of EPDM/CaCO3/Bt composites increased with the replacement of CaCO3 by Bt from 0 to 30 phr of Bt. For EPDM/silica/Bt composites, the maximum tensile strength and Eb were obtained at a Bt loading of 15 phr, with enhanced tensile modulus on further increase of Bt loading. The dynamic mechanical studies revealed a strong rubber-filler interaction with increasing Bt loading in both composites, which is manifested by the lowering of tan δ at the glass transition temperature (Tg) for EPDM/CaCO3/Bt composites and tan δ at 40 °C for EPDM/silica/Bt composites. Scanning electron microscopy (SEM) micrographs proved that incorporation of 15 phr Bt improves the dispersion of silica and enhances the interaction between silica and the EPDM matrix.  相似文献   

7.
Layered silicate/natural rubber composites were prepared by direct polymer melt intercalation. Na‐montmorillonite Kunipia‐F and its organic derivates (organo‐clays) prepared by ion exchange were used as clay fillers. Silica (SiO2) Ultrasil VN3, a filler commonly used in the rubber industry, was used in combination with clay fillers. The effect of clay or organo‐clay loading from 1 up to 10 phr without (0 phr) or with silica (15 phr) showed significant improvement of the tensile properties (stress at break, strain at break and modulus M100). Modification of montmorillonite by three alkylammonium cations with the same length of alkylammonium chain (18 carbons) and different structure resulted in altered reinforcing and plasticizing effects of the filler in composites with rubber matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This research is conducted using palm kernel shell powder (PKS) as filler in natural rubber The effect of 3-aminopropyltrimethoxysilane as coupling agent on composites were studied at different palm kernel shell loading i.e, 0 5, 10, 15 and 20 phr The palm kernel shell was crushed and sieved to an average particle size of 5.53 μm The palm kernel shell filled natural rubber composites were prepared using laboratory size two roll mill The curing characteristics such as scorch time, cure time and maximum torque were obtained from rheometer The palm kernel shell powder filled natural rubber composites were cured at 150oC using hot press according to their cure time Curing characteristics, tensile properties, rubber-filler interaction and morphological properties of palm kernel shell powder filled natural rubber were studied Scorch time and cure time show reduction but tensile strength, elongation at break, modulus at 100% (M100) and modulus at 300% (M300) increased with the presence of 3-aminopropyltrimethyloxysilane Rubber-filler interaction studies showed that rubber filler interaction in natural rubber filled with palm kernel shell powder improved with incorporation of 3-aminopropyltrimethyoxysilane.  相似文献   

9.
The effect of incorporating sorbic acid (SA), an echo-friendly curing agent, and silica or carbon black (CB) filler, as well as gamma irradiation on the physico-chemical, mechanical and thermal properties of ethylene propylene diene monomer rubber (EPDM) was investigated. The results indicated that the developed composites revealed improvement in the studied parameters over the untreated samples. Filler incorporation into rubber matrix has been proven a key factor in enhancing the swelling resistance, tensile strength and thermal properties of the fabricated composites. The improvement in tensile strength and modulus was attributed to better interfacial bonding via SA. Alternatively, a comparison was established between the performance of the white and black fillers. The utmost mechanical performance was reported for the incorporated ratios 10 phr SA and 40 phr white filler into a 50 kGy irradiated composite. Meanwhile, the incorporation of CB yielded better thermally stable composites than those filled with silica at similar conditions.  相似文献   

10.
The physical and mechanical properties of nitrile–butadiene rubber (NBR) composites with N-cetylpyridinium bromide-carbon black (CPB-CB) were investigated. Addition of 5 parts per hundred rubber (phr) of CPB-CB into NBR improved the tensile strength by 124%, vulcanization rate by 41%, shore hardness by 15%, and decreased the volumetric wear by 7% compared to those of the base rubber-CB composite.  相似文献   

11.
The effect of Alkanolamide (ALK) loading on properties on three different types of carbon black (CB)-filled rubbers (SMR-L, ENR-25, and SBR) was investigated. The ALK loadings were 1.0, 3.0, 5.0 and 7.0 phr. It was found that ALK gave cure enhancement, better filler dispersion and greater rubber–filler interaction. ALK also enhanced modulus, hardness, resilience and tensile strength, especially up to 5.0 phr of loading in SMR-L and SBR compounds, and at 1.0 phr in ENR-25 compound. Scanning electron microscopy (SEM) proved that each optimum ALK loading exhibited the greatest matrix tearing line and surface roughness due to better rubber - filler interaction.  相似文献   

12.
Poly(urea urethane) (PUU) with a poly(dimethylsiloxane) soft segment was synthesized. Different types of conductive fillers—carbon nanotube (CNT), silver‐coated carbon nanotube (CNT–Ag), and nickel‐coated carbon nanotube (CNT–Ni)—were blended with PUU to form partially conductive polymer composites. The results showed that highly conductive metals could improve the conductivity of CNTs significantly. When the filler contents were 3, 4, and 5 parts per hundred parts of resin (phr), the PUU/CNT composites possessed electromagnetic interference shielding effectiveness (SE) at 8.5, 28.4, and 26.0 dB as the electromagnetic wave frequencies were 12.3, 16.2, and 15.9 GHz, respectively. SE of the composites that contained CNT–Ni and CNT–Ag increased with the filler loading. At the same modified‐CNT loading, the CNT–Ni‐filled composites had a higher SE than those filled with CNT–Ag. Tensile stresses ranged from 5.7 to 15.6 MPa (a 177.3% increase) when the CNT concentration reached 8 phr. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 345–358, 2005  相似文献   

13.
Flexible dielectric chloroprene rubber (CR) nanocomposites reinforced by one-dimensional carbon nanotube (CNT)/two dimensional reduced graphene oxide hybrids have been prepared using two-roll mill mixing technique. Non-covalent π-π interaction between multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) nanosheets and the secondary interaction between fillers and chloroprene rubber matrix are responsible for generating the effective load transfer between RGO/MWCNTs and CR. The prepared RGO-MWCNT hybrid nanocomposites with high dielectric constant (≈650), low dielectric loss (≈0.42) and high energy storage efficiency (78.6%) values are practically good enough to use as a low cost polymeric dielectric layer in transistors. Furthermore, the prepared nanocomposites showed excellent electromagnetic effectiveness; a maximum shielding efficiency of 11.87 dB @ 3.5 GHz was achieved at 4 phr of MWCNT loading. This excellent electromechanical performance can be ascribed to the synergistic effect of RGO-MWCNT hybrid suggesting that this novel hybrid nanocomposite serves as an attractive candidate in modern electronics and electric power systems.  相似文献   

14.
Preferentially aligned short fiber reinforced nitrile rubber (NBR) composites with very high moduli at low elongation and high elongation at break were developed by using short and fine pineapple leaf fiber (PALF) and silica as the hybrid (two component) reinforcement. The amount of PALF was fixed at 10 parts (by weight) per hundred of rubber (phr) while that of silica was varied from 0 to 30 phr. Uniaxial NBR composites were prepared and tested for their mechanical properties in the directions both parallel and perpendicular to the fiber axis. Comparison was made against silica-NBR composites of the same total filler loadings. All composites with PALF display very distinct stress-strain curves. The stress rises sharply when the composite is stretched, while that of silica filled composites with the same loading rises gradually. The addition of silica initially lowers the early part of the stress-strain curve but prolongs breaking to greater strains. Further addition of silica raises the early part of the stress-strain curve back to and above that of the lower silica contents. It also significantly increases the elongation at break. Observation of other properties is also reported. Considering all the properties evaluated, reinforcement of NBR with PALF-silica hybrid shows great promise for engineering applications.  相似文献   

15.
The goal of this work was to study gamma irradiation ageing of rubber blends based on acrylonitrile butadiene rubber (NBR) and chlorosulphonated polyethylene rubber (CSM) reinforced by silica nano particles. The NBR/CSM compounds (50: 50, w/w) filled with different content of filler (0–100 phr) were crosslinked by sulfur. The vulcanization characteristics were assessed using the rheometer with an oscillating disk. The vulcanizates were prepared in a hydraulic press. The obtained materials were exposed to the different irradiation doses (100, 200, 300 and 400 kGy). The mechanical properties (hardness, modulus at 100% elongation, tensile strength and elongation at break) and swelling numbers were assessed before and after gamma irradiation ageing.  相似文献   

16.
《先进技术聚合物》2018,29(8):2381-2391
Neglecting the alteration of matrix curing characteristics in a filled rubber nanocomposite, as a result of possible interactions between the nano filler and curing agent ingredients, leads to inaccurate properties prediction using conventional hydrodynamic equations. In the current work, we present a new empirical extended version of hydrodynamic equation and examine its capability in predicting the viscoelastic properties of NBR/nanosilica system in which the negative influence of the filler on the curing process of the NBR matrix was confirmed through various analyses such as tensile test, rheometry, swelling experiments, and dynamic mechanical analysis. The results showed that the proposed empirical extended model is able to account the contribution of alteration of matrix curing characteristics in changing the composite properties below the filler percolation threshold. It was demonstrated that the extended model provides more accurate prediction of viscoelastic properties of silica‐filled cured NBR nanocomposites above glass transition temperature.  相似文献   

17.
The effect of exfoliated graphite (EG) on the mechanical, tribological and dielectric properties of the silicone rubber (QM) composites has been systematically investigated and analysed. Morphological analysis of the composites helps to understand the interfacial interaction between the filler and the rubber matrix as well as wear mechanism respectively. An enhancement in the mechanical, tribological and dielectric properties was observed with an increase in filler loading and better performance was observed at 7 phr of filler loading. The improvement in performance is attributed to the better interaction between the QM chains and the EG layers as evident from the AFM and TEM analysis. It is also evident from the Kraus plot which supports the reinforcing effect of EG in QM matrix.  相似文献   

18.
Natural rubber based composites were prepared by incorporating Wood flour of two different particle size ranges (250–300 µm) and (300–425 µm) and concentrations (15 and 30 phr) into the matrix, using a Banbury® internal mixer according to a base formulation. Curing characteristics of the samples were studied. Influence of particle size and loading of filler on the properties of the composites was analyzed. Results obtained show that the addition of wood flour to natural rubber increased scorch time and curing time and caused improvement in modulus at 300% strain and in tear properties. However, it decreased tensile strength and elongation at break. The particle size range of 300–425 µm was found to offer the best overall balance of mechanical and dynamic properties (tan δ and viscous torque). Swelling behavior of the composites in toluene was also analyzed in order to determine the rubber volume fraction and crosslinking density. Composites with the bigger particle size wood flour were found to have greater crosslinking density than the ones with smaller particle size, fact that could possibly indicate a better rubber-filler interaction in the former. Major percentage of filler increased slightly this interaction. Water absorption behavior of the composites with wood flour reached a maximum of 12% w/w when 30 phr of filler were incorporated; nonetheless, particle size did not affect this property. The ageing study in presence of air at 70 °C revealed that natural rubber composites with wood flour maintained the same classification cell with temperature as the pure rubber. A compound with 30 phr of carbon black was prepared for comparative purposes. Results obtained were as expected. Scorch time decreased and higher values of modulus at 300% strain and tensile strength were achieved, due to strongest interaction between filler and elastomer.  相似文献   

19.
The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites were studied. Scorch time, t2 and cure time, t90 of the composites decrease with increasing filler loading and with the presence of a silane coupling agent, Si69. Mooney viscosity also increases with increasing filler loading but at a similar filler loading shows lower value with the presence of Si69. The mechanical properties of composites viz tensile strength, tear strength, hardness and tensile modulus were also improved with the addition of Si69.  相似文献   

20.
Common nano clay fillers have layered structure. Some nano clays like Attapulgite (AT), Sepiolite have rod like fibrous structure. Compared to layered structured clay fibrous clay AT can undergo better dispersion in polymer matrix leading to better improvement in composite properties. Chemical modifications of AT are done through amine treatment as well as by amine+silane treatment to get chemically modified fillers AAT and SAT respectively. In the present investigation, nano composites are prepared using natural rubber (NR) filled with AT, AAT and SAT. Three different loadings of each filler are used namely 2.5, 5, and 10 phr (parts per hundred of rubber). Mechanical properties like tensile strength, elongation at break increase with the increase in filler loading up to 5 phr there after these properties marginally fall when loading is increased to 10 phr due to problem of filler dispersion at higher loading. However, modulus at 300% elongation and tear strength increases with the increase in filler loading up to 10 phr. Very similar trend can also be observed for composites with chemically modified fillers, AAT and SAT. But the degree of reinforcement is higher in the case of AAT and SAT compared to that of unmodified filler AT for the same filler loading. This difference is mainly due to better polymer-filler interaction and filler dispersion in the case of chemically modified clays AAT and SAT compared to unmodified AT. Tear strength of composites increases remarkably with the addition of AT and which is further enhanced when chemically modified clays AAT and SAT are added. Dynamic-mechanical analyses of different clay composites give idea about the difference in the degree of polymer–filler interaction due to chemical treatment of filler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号