首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methods of covalent labeling of a specific tag protein with small-molecular dyes play an important role in studying dynamic behaviors of proteins in living cells. On the basis of quinone methide chemistry, we designed and synthesized a beta-galactosidase labeling probe, CMFbeta-gal, which shows a fluorescence wavelength change accompanying the labeling reaction, owing to fluorescence resonance energy transfer (FRET). Since the FRET efficiency changes accompanying the labeling reaction, fluorescence of labeled protein can be observed separately from that of the unreacted probe, so immediate detection of the target protein is possible. This is the first report of a protein labeling probe which features a change of fluorescence wavelength upon reaction, allowing the labeled protein to be detected even in the presence of unreacted probe.  相似文献   

2.
The modification of proteins with synthetic probes is a powerful means of elucidating and engineering the functions of proteins both in vitro and in live cells or in vivo. Herein we review recent progress in chemistry‐based protein modification methods and their application in protein engineering, with particular emphasis on the following four strategies: 1) the bioconjugation reactions of amino acids on the surfaces of natural proteins, mainly applied in test‐tube settings; 2) the bioorthogonal reactions of proteins with non‐natural functional groups; 3) the coupling of recognition and reactive sites using an enzyme or short peptide tag–probe pair for labeling natural amino acids; and 4) ligand‐directed labeling chemistries for the selective labeling of endogenous proteins in living systems. Overall, these techniques represent a useful set of tools for application in chemical biology, with the methods 2–4 in particular being applicable to crude (living) habitats. Although still in its infancy, the use of organic chemistry for the manipulation of endogenous proteins, with subsequent applications in living systems, represents a worthy challenge for many chemists.  相似文献   

3.
Protein labeling with fluorogenic probes is a powerful method for the imaging of cellular proteins. The labeling time and fluorescence contrast of the fluorogenic probes are critical factors for the precise spatiotemporal imaging of protein dynamics in living cells. To address these issues, we took mutational and chemical approaches to increase the labeling kinetics and fluorescence intensity of fluorogenic PYP‐tag probes. Because of charge‐reversal mutations in PYP‐tag and probe redesign, the labeling reaction was accelerated by a factor of 18 in vitro, and intracellular proteins were detected with an incubation period of only 1 min. The brightness of the probe both in vitro and in living cells was enhanced by the mutant tag. Furthermore, we applied this system to the imaging analysis of bromodomains. The labeled mutant tag successfully detected the localization of bromodomains to acetylhistone and the disruption of the bromodomain–acetylhistone interaction by a bromodomain inhibitor.  相似文献   

4.
We report a site‐selective cysteine–cyclooctyne conjugation reaction between a seven‐residue peptide tag (DBCO‐tag, Leu‐Cys‐Tyr‐Pro‐Trp‐Val‐Tyr) at the N or C terminus of a peptide or protein and various aza‐dibenzocyclooctyne (DBCO) reagents. Compared to a cysteine peptide control, the DBCO‐tag increases the rate of the thiol–yne reaction 220‐fold, thereby enabling selective conjugation of DBCO‐tag to DBCO‐linked fluorescent probes, affinity tags, and cytotoxic drug molecules. Fusion of DBCO‐tag with the protein of interest enables regioselective cysteine modification on proteins that contain multiple endogenous cysteines; these examples include green fluorescent protein and the antibody trastuzumab. This study demonstrates that short peptide tags can aid in accelerating bond‐forming reactions that are often slow to non‐existent in water.  相似文献   

5.
We report here the development of a general strategy for site-specific labeling of proteins with small molecules by posttranslational modification enzyme, phosphopantetheinyl transferase Sfp. The target proteins are expressed as fusions to the peptide carrier protein (PCP) excised from nonribosomal peptide synthetase, and Sfp catalyzes the covalent modification of a specific serine residue on PCP by the small molecule-phosphopantetheinyl conjugate. The labeling reaction proceeds with high specificity and efficiency, targeting PCP fusion proteins in the cell lysate. The PCP tag has been shown to be compatible with various proteins, and Sfp-catalyzed PCP modification, compatible with various small-molecule probes conjugated to coenzyme A, highlighting the potential of the PCP tag for site-specific protein labeling with small molecules.  相似文献   

6.
We describe herein a new method for covalent labeling of proteins using a complementary recognition pair of peptide tag and synthetic molecular probe. The rapid and specific covalent labeling of a tag-fused protein was achieved by the reaction on the tag site with the probe through their selective molecular recognition. The advantages of this method involve the facile functional modification and the high labeling specificity of the tag-fused protein, which are demonstrated in the labeling experiments in various conditions even inside cells.  相似文献   

7.
Protein labeling with fluorogenic probes is a powerful method for the imaging of cellular proteins. The labeling time and fluorescence contrast of the fluorogenic probes are critical factors for the precise spatiotemporal imaging of protein dynamics in living cells. To address these issues, we took mutational and chemical approaches to increase the labeling kinetics and fluorescence intensity of fluorogenic PYP‐tag probes. Because of charge‐reversal mutations in PYP‐tag and probe redesign, the labeling reaction was accelerated by a factor of 18 in vitro, and intracellular proteins were detected with an incubation period of only 1 min. The brightness of the probe both in vitro and in living cells was enhanced by the mutant tag. Furthermore, we applied this system to the imaging analysis of bromodomains. The labeled mutant tag successfully detected the localization of bromodomains to acetylhistone and the disruption of the bromodomain–acetylhistone interaction by a bromodomain inhibitor.  相似文献   

8.
To understand the function of protein in live cells, real-time monitoring of protein dynamics and sensing of their surrounding environment are important methods. Fluorescent labeling tools are thus needed that possess fast labeling kinetics, high efficiency, and long-term stability. We developed a versatile chemical protein-labeling tool based on fluorophore-conjugated diazabicyclooctane β-lactamase inhibitors (BLIs) and wild-type TEM-1 β-lactamase protein tag. The fluorescent probes efficiently formed a stable carbamoylated complex with β-lactamase, and the labeled proteins were visualized over a long period of time in live cells. Moreover, use of an α-fluorinated carboxylate ester-based BLI prodrug enabled the probe to permeate cell membranes and stably label intracellular proteins after unexpected spontaneous ester hydrolysis. Lastly, combining the labeling tool with a pH-activatable fluorescent probe allowed visual monitoring of lysosomal protein translocation during autophagy.  相似文献   

9.
Protein turnover critically influences many biological functions, yet methods have been lacking to assess this parameter in?vivo. Here, we demonstrate how chemical labeling of SNAP-tag fusion proteins can be exploited to measure the half-life of resident intracellular and extracellular proteins in living mice. First, we demonstrate that SNAP-tag substrates have wide?bioavailability in mice and can be used for the specific in?vivo labeling of SNAP-tag fusion proteins. We then apply near-infrared probes to perform noninvasive imaging of in?vivo-labeled tumors. Finally, we use SNAP-mediated chemical pulse-chase labeling to perform measurement of the in?vivo half-life of different extra- and intracellular proteins. These results open broad perspectives for studying protein function in living animals.  相似文献   

10.
化学标记技术可以实现选择性地标记蛋白质/多肽分子,从而极大地提高了对蛋白质/多肽的识别效率和检测灵敏度,是突破蛋白质/多肽化学组成局限和仪器分析检测能力瓶颈的有效途径.本文对目前这一领域的研究现状扼要地进行了综述,主要包括针对蛋白质/多肽分子中内源氨基酸残基的标记策略、蛋白质/多肽分子中翻译后修饰基团的标记策略、基因编码表达肽段的标记策略以及配体/抗体亲和标记策略.透过这些研究所取得的成果,可以断定化学标记技术将会不断发展并将在蛋白质及蛋白质组学研究中发挥重要作用.  相似文献   

11.
The chemical modification of proteins is a valuable technique in understanding the functions, interactions, and dynamics of proteins. Reactivity and selectivity are key issues in current chemical modification of proteins. The Michael addition‐like thiol–ene reaction is a useful tool that can be used to tag proteins with high selectivity for the solvent‐exposed thiol groups of proteins. To obtain insight into the bioconjugation of proteins with this method, a kinetic analysis was performed. New vinyl‐substituted pyridine derivatives were designed and synthesized. The reactivity of these vinyl tags with L ‐cysteine was evaluated by UV absorption and high‐resolution NMR spectroscopy. The results show that protonation of pyridine plays a key role in the overall reaction rates. The kinetic parameters were assessed in protein modification. The different reactivities of these vinyl tags with solvent‐exposed cysteine is valuable information in the selective labeling of proteins with multiple functional groups.  相似文献   

12.
In this review, we described the design strategies of SNAP-tag fl uorogenic probes with turn-on fl uorescence responses, which minimized the fl uorescence background and allowed for direct imaging in living cells without wash-out steps. These probes can apply in real-time analysis of protein localization, dynamics, and protein– protein interactions in living cells. Furthermore, the excellent fl uorescent properties made it possible to apply some of the probes in super-resolution fl uorescence imaging.  相似文献   

13.
In this work, we establish a methodology for comparing the efficiencies of different hydrazide labels for detecting protein carbonyls. We have chosen acrolein-modified human serum albumin as a model. This system provides a convenient means of reproducibly generating carbonylated protein. Five hydrazide-based labels were tested. Three carry a biotin affinity tag, and the others are simple fatty acid hydrazides. For the biotin-based labels, the yield of the labeling reaction varies considerably, and the most commonly used label, biotin hydrazide, gives the lowest yield. The total tandem mass spectrometry (MS/MS) spectrum counts of modified peptides are similar for all of the biotin-based tags, indicating that factors beyond the labeling efficiency are important in determining the effectiveness of the label. In addition, there is a large variation in the number of spectra obtained for specific, modified peptides depending on the nature of the labeling group. This variation implies that the relative detectability of a particular modification site is highly dependent on the tagging reagent, and more importantly, titration schemes aimed at identifying the most reactive site based on its threshold concentration will be biased by the choice of tagging reagent. The fatty acid hydrazides are somewhat more effective than the biotin-based hydrazides in generating identifiable MS/MS spectra but offer no opportunity for enrichment. For the biotin-based tags, avidin affinity chromatography was used with the tryptic digests, and each tag led to similar enrichment levels.  相似文献   

14.
Considering the tremendous complexity and the wide dynamic range of protein samples from biological origin and their proteolytic peptide mixtures, proteomics largely requires simplification strategies. One common approach to reduce sample complexity is to target a particular amino acid in proteins or peptides, such as cysteine (Cys), with chemical tags in order to reduce the analysis to a subset of the whole proteome. The present work describes the synthesis and the use of two new cysteinyl tags, so‐called cysteine‐reactive covalent capture tags (C3T), for the isolation of Cys‐containing peptides. These bifunctional molecules were specifically designed to react with cysteines through iodoacetyl and acryloyl moieties and permit efficient selection of the tagged peptides. To do so, a thioproline was chosen as the isolating group to form, after a deprotection/activation step, a thiazolidine with an aldehyde resin by the covalent capture (CC) method. The applicability of the enrichment strategy was demonstrated on small synthetic peptides as well as on peptides derived from digested proteins. Mass spectrometric (MS) analysis and tandem mass spectrometric (MS/MS) sequencing confirmed the efficient and straightforward selection of the cysteine‐containing peptides. The combination of C3T and CC methods provides an effective alternative to reduce sample complexity and access low abundance proteins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Intracellular delivery of therapeutic proteins is highly challenging and in most cases requires chemical or genetic modifications. Herein, two complementary approaches for endocytosis‐independent delivery of proteins to live mammalian cells are reported. By using either a “glycan” tag naturally derived from glycosylated proteins or a “traceless” tag that could reversibly label native lysines on non‐glycosylated proteins, followed by bioorthogonal conjugation with cell‐penetrating poly(disulfide)s (CPDs), we achieved intracellular delivery of proteins (including antibodies and enzymes) which, upon spontaneous degradation of CPDs, led to successful release of their “native” functional forms with immediate bioavailability.  相似文献   

16.
《Chemistry & biology》1996,3(7):551-559
Background: To study very large macromolecular complexes, it would be useful to be able to incorporate probe molecules, such as fluorescent tags or photoactivatable crosslinkers, into specific sites on proteins. Current methods for doing this use relatively large amounts of highly purified protein, limiting the general utility of these approaches. The need for covalent posttranslational chemistry also makes it extremely difficult to use modified proteins in studies of native complexes in crude lysates or in living cells. We set out to develop a protein tag that would circumvent these problems.Results: A very simple type of molecular recognition, metal-ligand complexation, can be used to deliver a nickel-based crosslinking reagent to proteins containing a six-histidine (His6) tag. When activated with a peracid, the His6-Ni complex mediates oxidative crosslinking of nearby proteins. The crosslinking reaction does not involve freely diffusible intermediates, and thus only those proteins in close proximity to the His6-tagged polypeptide are crosslinked.Conclusions: The His6 tag, commonly used as an affinity handle for the purification of recombinant proteins, can also be used as an internal receptor for an oxidative protein-crosslinking reagent. No covalent protein modifications are necessary, since the Hiss tag is introduced at the DNA level. The crosslinking reaction is fast, efficient in most cases, and provides products that are easily separated from most other proteins present. This methodology should find widespread use in the study of multiprotein complexes.  相似文献   

17.
The specific and covalent labeling of fusion proteins with synthetic molecules opens up new ways to study protein function in the living cell. Here we present a novel method that allows for the specific and exclusive extracellular labeling of proteins on the surfaces of live cells with a large variety of synthetic molecules including fluorophores, protein ligands, or quantum dots. The approach is based on the specific labeling of fusion proteins of acyl carrier protein with synthetic molecules through post-translational modification catalyzed by phosphopantetheine transferase. The specificity and versatility of the labeling should allow it to become an important tool for studying and manipulating cell surface proteins and for complementing existing approaches in cell surface engineering.  相似文献   

18.
Intracellular protein labeling with small molecular probes that do not require a washing step for the removal of excess probe is greatly desired for real-time investigation of protein dynamics in living cells. Successful labeling of proteins on the cell membrane has been performed using mutant β-lactamase tag (BL-tag) technology. In the present study, intracellular protein labeling with novel cell membrane permeable probes based on β-lactam prodrugs is described. The prodrug-based probes quickly permeated the plasma membranes of living mammalian cells, and efficiently labeled intracellular proteins at low probe concentrations. Because these cell-permeable probes were activated only inside cells, simultaneous discriminative labeling of intracellular and cell surface BL-tag fusion proteins was attained by using cell-permeable and impermeable probes. Thus, this technology enables adequate discrimination of the location of proteins labeled with the same protein tag, in conjunction with different color probes, by dual-color fluorescence. Moreover, the combination of BL-tag technology and the prodrug-based probes enabled the labeling of target proteins without requiring a washing step, owing to the efficient entry of probes into cells and the fast covalent labeling achieved with BL-tag technology after bioactivation. This prodrug-based probe design strategy for BL-tags provides a simple experimental procedure with application to cellular studies with the additional advantage of reduced stress to living cells.  相似文献   

19.
The ability to modify target "native" (endogenous) proteins selectively in living cells with synthetic molecules should provide powerful tools for chemical biology. To this end, we recently developed a novel protein labeling technique termed ligand-directed tosyl (LDT) chemistry. This method uses labeling reagents in which a protein ligand and a synthetic probe are connected by a tosylate ester group. We previously demonstrated its applicability to the selective chemical labeling of several native proteins in living cells and mice. However, many fundamental features of this chemistry remain to be studied. In this work, we investigated the relationship between the LDT reagent structure and labeling properties by using native FK506-binding protein 12 (FKBP12) as a target protein. In vitro experiments revealed that the length and rigidity of the spacer structure linking the protein ligand and the tosylate group have significant effects on the overall labeling yield and labeling site. In addition to histidine, which we reported previously, tyrosine and glutamate residues were identified as amino acids that are modified by LDT-mediated labeling. Through the screening of various spacer structures, piperazine was found to be optimal for FKBP12 labeling in terms of labeling efficiency and site specificity. Using a piperazine-based LDT reagent containing a photoreactive probe, we successfully demonstrated the labeling and UV-induced covalent cross-linking of FKBP12 and its interacting proteins in vitro and in living cells. This study not only furthers our understanding of the basic reaction properties of LDT chemistry but also extends the applicability of this method to the investigation of biological processes in mammalian cells.  相似文献   

20.
With the advent of single‐molecule methods, chemoselective and site‐specific labeling of proteins evolved to become a central aspect in chemical biology as well as cell biology. Protein labeling demands high specificity, rapid as well as efficient conjugation, while maintaining low concentration and biocompatibility under physiological conditions. Generic methods that do not interfere with the function, dynamics, subcellular localization of proteins, and crosstalk with other factors are crucial to probe and image proteins in vitro and in living cells. Alternatives to enzyme‐based tags or autofluorescent proteins are short peptide‐based recognition tags. These tags provide high specificity, enhanced binding rates, bioorthogonality, and versatility. Here, we report on recent applications of multivalent chelator heads, recognizing oligohistidine‐tagged proteins. The striking features of this system has facilitated the analysis of protein complexes by single‐molecule approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号