首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel voltammetric sensor, based on single-walled carbon nanotubes (SWNT) dispersed in Nafion and modified glassy carbon electrode (GCE), was fabricated and used to determine the trace amounts of dihydromyricetin (DMY). The electrochemical behavior of DMY at this sensor was investigated in 0.1 mol L−1 sulfuric acid solutions + 0.1 mol L−1 NaCl by cyclic voltammetry and squarewave voltammetry. Compared with bare GCE, the electrode presented an excellent response of DMY through an adsorption-controlled quasi-reversible process. Under the optimum conditions, the response peak currents were linear relationship with the DMY concentrations in the range of 1.0 × 10−7–1.0 × 10−5 mol L−1 with a detection limit of 9 × 10−8 mol L−1. Based on this voltammetric sensor, a simple and sensitive electroanalytical method for DMY was proposed and applied to quantitative determination of DMY in Ampelopsis grossedentata samples. In addition, the oxidation mechanism was proposed and discussed, which could be a reference for the pharmacological action of DMY in clinical study.  相似文献   

2.
Guanosine-5′-monophosphate (GMP) was investigated the electrochemical behaviors based on solid-phase extractionon (SPE) at Cu-Mg-Al hydrotalcite-like compound (HTLC) modified glass carbon electrode. Cu-Mg-Al hydrotalcite-like compound (HTLC) was proved as a new sorbent for SPE of GMP, which showed an irreversible adsorption oxidation process on the HTLC/GCE with the oxidation peak potential located at 1.15 V (vs. SCE) in a pH 5.0 acetate buffer solution. Influencing factors of the electrochemical behavior of GMP on the HLTC/GCE were optimized and kinetic parameters were calculated. Under the optimal conditions, with differential pulse voltammetry (DPV), a linear relationship was obtained between the oxidation peak current and the GMP concentration in the range from 1.0 × 10− 6 to 8.0 × 10−4 mol L−1 with the detection limit as 5.0 × 10−7 mol L−1 (signal-to-noise ratio of 3). The modified electrode surface has very good reproducibility and stability.  相似文献   

3.
Single-wall carbon nanotubes (SWNT) were dispersed into water in the presence of dicetyl phosphate (DCP), and then a SWNT-DCP film-coated glassy carbon electrode (GCE) was constructed. The electrochemical behavior of acetaminophen at bare GCE and SWNT-DCP modified GCE were compared, suggesting that the SWNT-DCP-modified GCE significantly enhances the oxidation peak current of acetaminophen. A sensitive and simple electrochemical method with a good linear relationship in the range of 1.0 × 10−7–2.0 × 10−5 mol L−1, was developed for the determination of acetaminophen. The detection limit is 4.0 × 10−8 mol L−1 for 3-min accumulation. This method was successfully demonstrated with tablets.  相似文献   

4.
Simple and sensitive electrochemical method for the determination of nitrite, based on a nano-alumina-modified glassy carbon electrode (GCE), is described. Nitrite yields a well-defined oxidation peak whose potential is 0.74 V at the nano-alumina-coated GCE in 0.1 mol L−1 phosphate buffer (pH 5.0). Compared with bare GCE, the nano-alumina-modified GCE has evident catalytic effect towards the oxidation of nitrite, and its peak current can be significantly enhanced. Some of the experimental parameters were optimized for the determination of nitrite. The oxidation peak current was proportional to nitrite concentration in the range of 5.0 × 10−8–1.1 × 10−3 mol L−1, and a detection limit of 1.0 × 10−8 mol L−1 was obtained. This method has been successfully used to the determination of nitrite in sausage sample. Furthermore, results obtained by the method have been compared with spectrophotometric method.  相似文献   

5.
The electrochemical behavior of epinephrine (EP) at a mercaptoacetic acid (MAA) self-assembled monolayer modified gold electrode was studied. The MAA/Au electrode is demonstrated to promote the electrochemical response of epinephrine by cyclic voltammetry. The possible reaction mechanism is also discussed. The diffusion coefficient D of EP is 6.85 × 10−6 cm2 s−1. In 0.1 mol L−1 phosphate buffer (pH 7.20), a sensitive oxidation peak was observed at 0.177 V, and the peak current is proportional to the concentration of EP in the range of 1.0 × 10−5–2.0 × 10−4 mol L−1 and 1.0 × 10−7–1.0 × 10−6 mol L−1. The detection limit is 5 × 10−8 mol L−1. The modified electrode is highly stable and can be applied to the determination of EP in practical injection samples. The method is simple, quick, sensitive and accurate.  相似文献   

6.
Single-wall carbon nano-tubes were used to modify the surface of a glassy carbon electrode (GC) and applied in the determination of folic acid with voltammetry. The experiments demonstrated that the presence of a carbon nano-tube film on the electrode greatly increased the reduction peak current of folic acid. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used in a comparative investigation of the electrochemical reduction of folic acid with the film electrode. Effects of pH on the peak current and the peak potential were studied in the pH range of 4.0–8.0 with Britton-Robinson buffer solution. The reduction peak current was found to be linearly related to folic acid concentration over the range of 1 × 10−8 to 1 × 10−4 mol L−1 with a detection limit of 1 × 10−9 mol L−1 after 5 min accumulation. The film electrode provides an efficient way for eliminating interferences from some inorganic and organic species in the solution. The high sensitivity, selectivity and stability of the film electrode demonstrate its practical application from a simple and rapid determination of folic acid in tablets.  相似文献   

7.
A novel electrochemical sensor for methyl parathion based on silicate– cetyltrimethylammonium bromide nanocomposite film has been fabricated by electro-assisted deposition onto glassy carbon electrode in one-step via an electrochemical modulation of pH at the electrode/solution interface to promote controlled gelification of tetraethylorthosilicate sol, and was characterized with scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The electrochemical sensing of methyl parathion on the film-modified electrode was investigated applying cyclic voltammetry and square wave voltammetry. Compared to the unmodified electrode, the shapes of the redox peaks were improved and the peak currents significantly increased. Experimental parameters such as deposition time, pH value, and accumulation conditions have been optimized. A linear relationship between the peak current and methyl parathion concentration was obtained in the range from 1.0 × 10−7 to 1.0 × 10−4 mol L−1 with a detection limit of 1.04 × 10 −8 mol L−1 (S/N = 3) after accumulation at 0 V for 120 s. The film electrode shows great promise for determination of methyl parathion in real samples.   相似文献   

8.
The fabrication and electrochemical characteristics of a penicillamine (PCA) self-assembled monolayer modified gold electrode were investigated. The electrode can enhance the electrochemical response of uric acid (UA), and the electrochemical reaction of UA on the PCA electrode has been studied by cyclic voltammetry and differential pulse voltammetry. Some electrochemical parameters, such as diffusion coefficient, standard rate constant, electron transfer coefficient and proton transfer number have been determined for the electrochemical behavior on the PCA self-assembled monolayer electrode. The electrode reaction of UA is an irreversible process, which is controlled by the diffusion of UA with two electrons and two protons transfer at the PCA/Au electrode. In phosphate buffer (pH 5.0), the peak current is proportional to the concentration of UA in the range of 6.0 × 10−5–7.0 × 10−4 mol L−1 and 2.0 × 10−5–7.0 × 10−4 mol L−1 for the cyclic voltammetry and differential pulse voltammetry methods with the detection limits of 5.0 × 10−6 and 3.0 × 10−6 mol L−1, respectively. The method can be applied to determine UA concentration in real samples.  相似文献   

9.
Poly(phenol red) (denoted as PPR) films were electrochemically synthesized on the surface of a glassy carbon electrode (GCE) by cyclic voltammetry to obtain a chemically modified electrode (denoted as PPR-GCE). The growth mechanism of PPR films was studied by attenuated total reflection spectroscopy. This PPR-GCE was used to develop a novel and reliable method for the determination of trace Pb2+ by anodic stripping differential pulse voltammetry. At optimum conditions, the anodic peak exhibits a good linear concentration dependence in the range from 5.0 × 10−9 to 5.0 × 10−7 mol L−1 (r = 0.9989). The detection limit is 2.0 × 10−9 mol L−1 (S/N = 3). The method was employed to determine trace levels of Pb2+ in industrial waste water samples. Correspondence: Gongjun Yang, Ming Shen, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China  相似文献   

10.
Chunya Li 《Mikrochimica acta》2007,157(1-2):21-26
Multi-wall carbon nanotubes (MWNT) were dispersed into water in the presence of dicetyl phosphate (DCP), and MWNT-DCP composite film coated glassy carbon electrodes (GCE) were constructed. The electrochemical properties of 2-chlorophenol at a bare GCE and MWNT-DCP modified GCE were compared. It was found that MWNT-DCP modified GCEs significantly enhance the oxidation peak current of 2-chlorophenol and lowers its oxidation overpotential, suggesting great potential in the sensitive determination of 2-chlorophenol. Finally, a sensitive and simple voltammetric method was developed for the determination of 2-chlorophenol. The oxidation peak current increases linearly with the concentration in the range of 1.0 × 10−7–2.0 × 10−5 mol L−1, and the detection limit is 4.0 × 10−8 mol L−1 for 2 min accumulation. The method was successfully used to determine 2-chlorophenol in waste water samples.  相似文献   

11.
A self-assembled electrode with a meso-2,3-dimercaptosuccinic acid (DMSA) monolayer has been characterized by electrochemical quartz crystal microbalance and complex impedance analysis, surface enhanced Raman spectroscopy and cyclic voltammetry. The self-assembled electrode was used for the simultaneous electrochemical detection of epinephrine (EP) and uric acid (UA) in phosphate buffer of pH 7.7. The simultaneous oxidation of EP and UA was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), and the signals for each method were well separated with a potential difference of over 330 mV and without interference by each other. The detection limit of EP is 5.4 × 10−8 mol L−1 by CV and 5.3 × 10−8 mol L−1 by DPV and that of UA is 8.4 × 10−8 mol L−1 by CV and 4.2 × 10−8 mol L−1 by DPV. The DMSA self-assembled electrode can be applied to the simultaneous determination of EP and UA.  相似文献   

12.
A novel L-cysteine film modified electrode has been fabricated by means of an electrochemical oxidation procedure, and it was successfully applied to the electrochemical determination of acetaminophen. This method utilizes the electrooxidation of amines to their analogous cation radicals to form a chemically stable covalent linkage between the nitrogen atom of the amine and edge plane sites at the glassy carbon electrode surface. The electrochemical behaviour of acetaminophen at the film electrode was investigated in 0.1 mol L−1 phosphate buffer (pH 6.20). It was found that the redox peak current of acetaminophen was enhanced greatly on the film electrode. Linearity between the oxidation peak current and the acetaminophen concentration was obtained in the range of 1.0 × 10−4–2.0 × 10−7 mol L−1 with a detection limit of 5.0 × 10−8 mol L−1. For seven parallel detections of 1.0 × 10−5 mol L−1 acetaminophen, the relative standard deviation (RSD) was 1.46%, suggesting that the film electrode has excellent reproducibility. Application to the determination of acetaminophen in drug tablets and human urine demonstrated that the film electrode has good stability and high sensitivity.  相似文献   

13.
A simple and highly selective electrochemical method has been developed for the simultaneous determination of hydroquinone (HQ) and catechol (CC) at a glassy carbon electrode covalently modified with penicillamine (Pen). The electrode is used for the simultaneous electrochemical determination of HQ and CC and shows an excellent electrocatalytical effect on the oxidation of HQ and CC upon cyclic voltammetry in acetate buffer solution of pH 5.0. In differential pulse voltammetric measurements, the modified electrode was able to separate the oxidation peak potentials of HQ and CC present in binary mixtures by about 103 mV although the bare electrode gave a single broad response. The determination limit of HQ in the presence of 0.1 mmol L−1 CC was 1.0 × 10−6 mol L−1, and the determination limit of CC in the presence of 0.1 mmol L−1 HQ was 6.0 × 10−7 mol L−1. The method was applied to the simultaneous determination of HQ and CC in a water sample. It is simple and highly selective.  相似文献   

14.
A 3-amino-5-mercapto-1,2,4-triazole (TA) self-assembled monolayer-modified gold electrode (TA SAM/Au) is characterized by X-ray photoelectron spectroscopy, A.C. impedance, cyclic voltammetry, chronoamperometry and chronocoulometry. The TA SAM/Au exhibited good promotion of the electrochemical oxidation of dopamine. Some electrochemical parameters of dopamine such as electron transfer number, exchange current density, standard heterogeneous rate constant, diffusion coefficient, etc., were measured by different electrochemical methods. The peak currents of dopamine were linearly dependent on its concentration in the range of 1.5 × 10−6–1.0 × 10−4 mol L−1, with a detection limit of 5.0 × 10−7 mol L−1. The oxidative peak potentials of dopamine and ascorbic acid were well separated at about 190 ± 10 mV in pH 2.0 BR buffers at TA SAM/Au, the oxidation peak current increases approximately linearly with increasing concentration of both dopamine and ascorbic acid in the concentration range of 9.98 × 10−6–4.54 × 10−4 mol L−1. It can be used for simultaneous determination of dopamine and ascorbic acid.  相似文献   

15.
We report a sensitive and convenient voltammetric method for the direct determination of 10-hydroxycamptothecin (HCPT). At a multi-wall carbon nanotube (MWNT)-modified electrode, HCPT yields a very sensitive and well-shaped oxidation peak, which can be used as analytical signal for HCPT determination. Compared with the poor electrochemical signal at the unmodified GCE, the electrochemical response of HCPT at the MWNT-modified GCE was greatly improved, as confirmed by the significant peak current enhancement. This result indicates that the MWNT-modified GCE has great potential in the sensitive determination of HCPT. Based on this, a very sensitive and simple electrochemical method was proposed for HCPT determination after all the experimental parameters were optimized. The newly-proposed method possesses very low detection limit (2 × 10−9 mol L−1) and wider linear range (from 1 × 10−8 to 4 × 10−6 mol L−1). Rapid and simple sample analysis is another advantage. Finally, this method was successfully demonstrated using HCPT drugs.  相似文献   

16.
A poly(L-cysteine) thin film was prepared onto electrode surface via electropolymerization. In pH 7.0 phosphate buffer, L-cysteine was oxidized during the cyclic potential sweep between −0.60 and 2.00 V, forming a thin film at the glassy carbon electrode (GCE) surface. The electrochemical behaviors of ascorbic acid at the bare GCE and the poly(L-cysteine) film-coated GCE were investigated. The oxidation peak potential of ascorbic acid shifts to more negative potential at the poly(L-cysteine) film-modified GCE. Moreover, the oxidation peak current significantly increases at the poly(L-cysteine) film-modified GCE. These phenomena indicate that poly(L-cysteine) film shows highly-efficient catalytic activity to the oxidation of ascorbic acid. Based on this, a sensitive and simple electrochemical method was proposed for the determination of ascorbic acid. The oxidation peak current of ascorbic acid is proportional to its concentration over the range from 1.0 × 10−6 to 5.0 × 10−4 mol l−1. The limit of detection is evaluated to be 4.0 × 10−7 mol l−1.  相似文献   

17.
We used a carbon paste electrode modified with multi-walled carbon nanotubes as a working electrode and studied the electrochemical behavior of zirconium-alizarin red S complex on it. It was found that the modified electrode exhibited a significant catalytic effect toward the reduction of free alizarin red S and the complex. The second derivative linear scan voltammograms of the complex were recorded by a polarographic analyser from 0 to −1000 mV (vs. SCE), and it was found that the complex can be adsorbed on the surface of the modified electrode, yielding a peak at about −470 mV, corresponding to the reduction of alizarin red S in the complex. The linear range was found to be 2.0 × 10−11–8.0 × 10−7 mol L−1, and the detection limit was 1.0 × 10−11 mol L−1 (S/N = 3) for 3 min accumulation. The procedure was successfully applied to the determination of trace amounts of zirconium in the ore samples. Correspondence: Pei-Hong Deng, Department of Chemistry and Material Science, Hengyang Normal University, Hengyang Hunan 421008, P.R. China  相似文献   

18.
A novel modified electrode was fabricated by electropolymerization of acid chrome blue K at a multi-walled carbon nanotubes modified glassy carbon electrode. The electrode developed was used for simultaneous determination of the isomers of dihydroxybenzene in environmental samples using first order linear sweep derivative voltammetry with background subtraction. A linear relationship between peak current and concentration of hydroquinone, catechol and resorcinol was obtained in the range of 1 × 10−6–1 × 10−4 mol L−1, and the detection limits were estimated to be 1 × 10−7, 1 × 10−7 and 9 × 10−8 mol L−1, respectively. The constructed electrode showed excellent reproducibility and stability. Real water samples were analyzed and satisfactory results were obtained. This method provides a new way of constructing electrodes for environmental and biological analysis.  相似文献   

19.
Electrochemical DNA biosensor was successfully developed by depositing the ionic liquid (e.g., 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][Otf])), ZnO nanoparticles, and chitosan (CHIT) nanocomposite membrane on a modified gold electrode (AuE). The electrochemical properties of the [EMIM][Otf]/ZnO/CHIT/AuE for detection of DNA hybridization were studied. Under optimal conditions using cyclic voltammetry, the target DNA sequences could be detected in the concentration range of 1.0 × 10−18 to 1.82 × 10−4 mol L−1, and with the detection limit of 1.0 × 10−19 mol L−1. This DNA biosensor detection approaches provide a quick, sensitive, and convenient method to be used in the identification of Trichoderma harzianum.  相似文献   

20.
A poly(caffeic acid) thin film was deposited on the surface of a glassy carbon electrode by potentiostatic technique in an aqueous solution containing caffeic acid. The poly(caffeic acid)-modified electrode was used for the determination of ascorbic acid (AA), dopamine (DA), and their mixture by cyclic voltammetry. This modified electrode exhibited a potent and persistent electron-mediating behavior followed by well-separated oxidation peaks toward AA and DA at a scan rate of 10 mV s−1 with a potential difference of 135 mV, which was large enough to determine AA and DA individually and simultaneously. The catalytic peak current obtained was linearly dependent on the AA and DA concentrations in the range of 2.0 × 10−5−1.2 × 10−3 and 1.0 × 10−6−4.0 × 10−5 mol L−1 in 0.15 mol L−1 phosphate buffer (pH 6.64). The detection limits for AA and DA were 9.0 × 10−6 and 4.0 × 10−7 mol L−1, respectively. The modified electrode shows good sensitivity, selectivity, and stability and has been applied to the determination of DA and AA in real samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号