首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
ε-Fe3N nanoparticles synthesized by chemical vapor condensation (CVC) are covered with shells of disordered Fe3O4 phase, as observed by a transmission electron microscopy. The zero-field cooling and field cooling temperature dependence of magnetization, ac susceptibility as a function of frequency, magnetic hysteresis loops, and the temperature dependence of resistivity of the ε-Fe3N nanoparticles are systematically studied. The results indicate the existence of complex magnetic properties, such as superparamagnetic behavior, exchange bias, magnetic dipole interaction, and the possible coexistence of ferromagnetic and spin-glass-like states and/or disordered surface spins of the shells at low temperatures. The temperature dependence of resistivity ρ(T) for compacted ε-Fe3N nanoparticles in a temperature range of 110 K< T< 300 K can be well described by the mechanism of fluctuation-induced tunneling conduction, while that below 110 K can be ascribed to conducting electrons scattered by localized magnetic moments and impurity as well as the influence of freezing of spin-glass-like moments and/or disordered surface spins of the shells.  相似文献   

2.
In nonmagnetic metals the spin-spin interaction of the electrons and nuclei makes a strongly magnetic field and temperature T dependent contribution to the residual resistivity. The nuclei act as magnetic impurities. For magnetic metals (Tb, Ho, Dy) with a high internal magnetic field, the nuclear contribution to the resistivity vanishes at low temperatures T, where the nuclear spins are ordered, and saturates at high temperatures T, where the nuclear spins are disordered—the analog of the Schottky effect for the nuclear specific heat. The electron-nuclear interaction can destroy superconductivity in metals with low critical magnetic fields under conditions of ferromagnetic ordering of the nuclear spins. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 3, 193–197 (10 August 1996)  相似文献   

3.
The magnetic properties of hematite powders produced by a solid state nucleation-and-growth process are studied as a function of temperature T and applied field H. Independently of the temperature, there exists a soft magnetic contribution that is assigned to the canting of spins at the superficial shell of each particle and is not affected by the Morin transition. At 220<T<T M a magnetic contribution with high coercivity is observed, due to spin–flop in the anti ferromagnetic state and above T M =248 K the weakly ferromagnetic state has a coercivity that ranges from 6 kOe to 4 kOe when raising T up to room temperature. Different sub-grain structures were obtained by means of isochronal and isothermal annealing. Changes in the susceptibility are directly related to the sub-particle size. It is concluded that sub-boundaries are the defects responsible for the high coercivities observed in the weakly ferromagnetic state.  相似文献   

4.
The effect of confinement from one, two or from all three directions on magnetic ordering has remained an active field of research for almost 100 years. The role of dipolar interactions and anistropy are important to obtain, the otherwise forbidden, ferromagnetic ordering at finite temperature for ions arranged in two-dimensional (2D) arrays (monlayers). We have demonstrated that conventional low-temperature magnetometry and polarized neutron scattering measurements can be performed to study short-range ferromagnetic ordering of in-plane spins in 2D systems using a multilayer stack of non-interacting monolayers of gadolinium ions formed by Langmuir-Blodgett (LB) technique. The spontaneous magnetization could not be detected in the heterogeneous magnetic phase observed here and the saturation value of the net magnetization was found to depend on the sample temperature and applied magnetic field. The net magnetization rises exponentially with lowering temperature and then reaches saturation following a T ln(βT) dependence. The T ln (βT) dependence of magnetization has been predicted from spinwave theory of 2D in-plane spin system with ferromagnetic interaction. The experimental findings reported here could be explained by extending this theory to a temperature domain of βT<1.  相似文献   

5.
The influence of dc biasing current on temperature dependence of resistivity and low-field magnetoresistance (MR) of La0.67Ba0.33MnO3 bulk sample is reported. A prominent finding is the change in resistivity around the insulator-to-metal transition temperature (TIM) and the change in MR around the ferromagnetic transition temperature (TC). The decrease in MR around TC at higher biasing current indicates a strong interaction between carrier spin and spin of Mn ions resulting in a higher alignment of Mn ion spins. Change in resistivity around TIM is interpreted in the framework of percolative conduction model based on the mixed phase of itinerant electrons and localized magnetic polarons.  相似文献   

6.
The EPR spectra of a quasi-two-dimensional organic metal [Pd(dddt)2]Ag1.5Br3.5 contain signals due to the spin resonance of conduction electrons (CESR) and signals due to the localized magnetic moments of Ag2+. The system of Ag2+ ions exhibits a strong indirect antiferromagnetic exchange interaction characterized by the Weiss constant Θ=−280(25) K, which leads to magnetic ordering at a temperature of T 0=70(10) K. The same temperature T 0 corresponds to a strong anomaly in the CESR linewidth. The observed anomaly in the CESR linewidth, as well as some features of the temperature dependence of conductivity in the system studied, are explained by the interaction between conduction electrons and Ag2+ ions localized in the anion layers (π-d interaction) and by antiferromagnetic ordering of the spins of Ag2+ magnetic ions.  相似文献   

7.
The temperature dependences of the specific magnetization σ and the electrical resistivity ρ of Me x Mn1 − x S single crystals (Me= Co, Gd; x= 0.05) have been studied in the temperature range 80 K < T < 1000 K. The samples under study have revealed the presence of a spontaneous magnetic moment below the Néel temperature (T N) and ferromagnetic clusters in Gd0.05Mn0.95S in the temperature range 146 K < T < 680 K. Substitution of gadolinium for manganese initiates a transition from p-type to n-type conduction. The change in the conduction type is accompanied by an increase in the electrical resistivity at 300 K by approximately one order of magnitude and, accordingly, by a decrease in the activation energy. The magnetic and electrical properties of the crystals under study have been interpreted in terms of the cluster model with temperature-dependent ferromagnetic exchange and an electron localized in this cluster. Original Russian Text ? S.S. Aplesnin, L.I. Ryabinkina, O.B. Romanova, V.V. Sokolov, A.Yu. Pichugin, A.I. Galyas, O.F. Demidenko, G.I. Makovetskiĭ, K.I. Yanushkevich, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 4, pp. 661–664.  相似文献   

8.
The magnetic phase transformations induced by changes of the composition, external magnetic field strength, and temperature in manganites with a nearly half-filled conduction band in the vicinity of the metal-insulator phase transition have been investigated experimentally. It has been found that the substitution of rare-earth ions (Sm) for Nd ions with a larger ionic radius in R 0.55Sr0.45MnO3 manganites leads to a linear decrease in the Curie temperature T C from 270 to 130 K and a transformation of the second-order ferromagnetic (FM) phase transition into a first-order phase transition. The results of measurements of the alternating-current (ac) magnetic susceptibility in the (Nd1 ? y Sm y )0.55Sr0.45MnO3 system indicate the existence of a Griffiths-like phase in samples with a samarium concentration y > 0.5 in the temperature range T C < T < T* (where T* ~ 220 K). For samples with y > 0.5, the magnetization isotherms at temperatures above T C exhibit specific features in the form of reversible metamagnetic phase transitions associated with strong fluctuations of the short-range ferromagnetic order in the system of Mn spins in the high-temperature Griffiths phase consisting of ferromagnetic clusters. According to the results of measurements of the ac magnetic susceptibility in the (Sm1 ? y Gd y )0.55Sr0.45MnO3 system for a gadolinium concentration y = 0.5, there is an antiferromagnetic (AFM) phase with an unusually low critical temperature of the spin ordering T N ? 48.5 K. An increase in the external static magnetic field at 4.2 K leads to an irreversible induction of the ferromagnetic phase, which is stable in the temperature range 4.2–60 K. In the temperature range 60 K < T < 150 K, there exists a high-temperature Griffiths-like phase consisting of clusters (correlations) with a local charge/orbital ordering. The metastable antiferromagnetic structure is retained in samples with gadolinium concentrations y = 0.6 and 0.7, but it is destroyed with a further increase in the gadolinium concentration upon the transition to the spin-glass state. The magnetization isotherm obtained with variations in the external static magnetic field in the field range ±70 kOe at 4.2 K and the temperature dependence of the ac-magnetic susceptibility χ suggest that, in the Gd0.55Sr0.45MnO3 ceramics, there is a mixed two-phase low-temperature state consisting of the quantum Griffiths phase with a characteristic divergence of χ(T) near T = 0, which was embedded in the spin-glass matrix with the spin “freezing” temperature T G ? 42 K. The low-temperature state with quantum fluctuations exists in the (Sm1 ? y Gd y )0.55Sr0.45MnO3 system for y ≥ 0.5.  相似文献   

9.
Temperature‐dependent magnetization and magnon Raman spectra were measured for anti‐ferromagnetic NiO‐nanoflowers. The results show several new magnetic behaviors, including the appearance of a ferromagnetic phase, a reduced Néel temperature (TN) and a reduced Curie temperature (TC). The temperature dependencies of the double magnon (2M) Raman wavenumber and intensity are similar to those of magnetization. A magnetic granules model (MGM) consisted of a crystalline core enclosed by a shell is proposed. The model suggests that the large quantity of spins induced by specific surface effect in the shell plays a key role in nano‐magnetism. Based on the MGM, the micro‐mechanism of the observed new magnetic behavior is understood by the magnon Raman spectra. The MGM is based on the general features of magnetic nano‐particles, and thus it should be generally applicable to common magnetic nano‐particles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The effect of point defects on the magnetic properties of La0.67Ca0.33MnO3 polycrystals and single crystals has been studied. The magnetic susceptibility χ dc of the initial samples and samples irradiated by electrons to the maximum dose F = 9 × 1018 cm?2 has been measured in the temperature region 80 K < T < 650 K. Local variations of Mn-O-Mn bond angles and lengths result in a nonmonotonic dose dependence of the Curie temperature T C. At high doses of electron irradiation, F ≥ 5 × 1018 cm?2, the temperature of the transition from the ferromagnetic to polaron state in a single crystal is found to increase. In the paramagnetic region close to T C, ferromagnetically ordered polarons are observed to exist, while at T > 1.2T C, localization of e g electrons initiates formation of paramagnetic polarons with a higher magnetic moment. Electron irradiation stimulates persistence of magnetic polarons up to higher temperatures T > 2T C.  相似文献   

11.
The spin density wave(SDW) — charge density wave(CDW) phase transition and the magnetic properties in a half-filled quasi-one-dimensional organic polymer are investigated by the world line Monte Carlo simulations. The itinerant π electrons moving along the polymer chain are coupled radically to localized unpaired d electrons, which are situated at every other site of the polymer chain. The results show that both ferromagnetic and anti-ferromagnetic radical couplings enhance the SDW phase and the ferromagnet order of the radical spins, but suppress the CDW phase. By finite size scaling, we are able to obtain the phase transition line in the parameter space. The ferromagnetic order of the radical spins are observed to coexist with the SDW phase. As compared to the system being free of the radical coupling, the phase transition line is shifted upward in the U-V parameter space in favor of larger V, where U is the on-site repulsion and V is the nearest-neighbor interaction between the π electrons. All of these findings can be understood qualitatively by a second-order perturbation theory starting from the classical state at zero temperature in the strong coupling limit. We also address the consequences of the radical coupling for the persistent current if the polymer chain is fabricated as a mesoscopic ring.  相似文献   

12.
The magnetic and thermal properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite are investigated in wide temperature (4–350 K) range, including under hydrostatic pressure (0–1.1 GPa). Throughout the pressure range investigated, the sample is spin glass with diffused phase transition into paramagnetic state. It is established, that spin glass state is a consequence of exchange interaction frustration of the ferromagnetic clusters embeded into antiferromagnetic clusters. The magnetic moment freezing temperature T f of ferromagnetic clusters increases under pressure, freezing temperature dependence on pressure is characterized by derivative value ∼4.5 K/GPa, while the magnetic ordering T MO temperature dependence is characterized by derivative value ∼13 K/GPa. The volume fraction of sample having ferromagnetic state is V fer ∼ 13% and it increases under a pressure of 1.1 GPa by ΔV fer ≈ 6%. Intensification of ferromagnetic properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite under hydrostatic pressure is a consequence of oxygen vacancies redistribution and unit cell parameters decrease. The most likely mechanism of frustrated exchange interactions formation is discussed.  相似文献   

13.
Petrov  A. V.  Yusupov  R. V.  Nikitin  S. I.  Gumarov  A. I.  Yanilkin  I. V.  Kiiamov  A. G.  Tagirov  L. R. 《JETP Letters》2019,110(3):217-222

The results of a femtosecond optical and magneto-optical spectroscopy study of a thin epitaxial film of a low-temperature magnetically soft Pd0.94Fe0.06 alloy on a ({dy001})-MgO substrate are reported. The photoinduced demagnetization and magnetization recovery times are determined. The latter increases critically at approaching the ferromagnetic ordering temperature TC = 190 K from below. It is shown that the reflectivity dynamics after a photoexcitation pulse evolves from a two-exponential in the paramagnetic phase to a four-component at 80 K < T < TC, simplifying to a three-component at T < 50 K. According to our interpretation, such an evolution, along with the manifestation of an additional increasing component in the magnetic response at 80 K < T < TC, indicates a magnetic and electronic inhomogeneity of the film associated with the distribution of local iron concentrations. The fraction of small-scale inclusions of the paramagnetic phase is estimated as ≈10 vol %.

  相似文献   

14.
The static and high-frequency dynamic magnetic properties and photoluminescence of two-dimensional semiconductor GaAs heterostructures containing an InGaAs quantum well and a thin manganese layer (δ layer) are studied. It is found that the Curie temperature is T C ≈ 35 K and the magnetic anisotropy field of the ferromagnetic manganese δ layer is H a ≈ 600 Oe. The spin resonance spectrum exhibits a line in weak fields (from −50 to 100 Oe), which is observed in the same temperature interval T < 40 K where the ferromagnetic ordering of the manganese δ layer occurs. This line is probably caused by the nonresonance contribution of the spin-dependent scattering of charge carriers to the negative magnetic resistance. The dependence of the degree of polarization of photoluminescence on the magnetic field also points to the ferromagnetic behavior of the manganese δ layer.  相似文献   

15.
We have examined the role of the BCS pairing mechanism in the formation of the magnetic moment and henceforth a spin glass (SG) phase by studying a fermionic Sherrington-Kirkpatrick model with a local BCS coupling between the fermions. This model is obtained by using perturbation theory to trace out the conduction electrons degrees of freedom in conventional superconducting alloys. The model is formulated in the path integral formalism where the spin operators are represented by bilinear combinations of Grassmann fields and it reduces to a single site problem that can be solved within the static approximation with a replica symmetric ansatz. We argue that this is a valid procedure for values of temperature above the de Almeida-Thouless instability line. The phase diagram in the T-g plane, where g is the strength of the pairing interaction, for fixed variance J 2 /N of the random couplings Jij, exhibits three regions: a normal paramagnetic (NP) phase, a spin glass (SG) phase and a pairing (PAIR) phase where there is formation of local pairs.The NP and PAIR phases are separated by a second order transition line g=g c (T) that ends at a tricritical point T 3 =0.9807J, g 3 =5,8843J, from where it becomes a first order transition line that meets the line of second order transitions at T c =0.9570J that separates the NP and the SG phases. For T<T c the SG phase is separated from the PAIR phase by a line of first order transitions. These results agree qualitatively with experimental data in . Received 14 May 1998  相似文献   

16.
Thermodynamical properties of ferromagnetic metals are discussed by using the single-site functional-integral method developed recently by the present author. It is shown that the entropy and the specific heat consist of two terms; one is due to the thermal excitations of electrons near the Fermi level, and the other arises from the disordered local magnetic moment. Numerical calculations show a huge specific-heat-peak due to magnetic contributions at the Curie temperature, Tc, and a large electronic specific heat at low temperatures and at T>Tc, which are qualitatively in agreement with experimental data of ferromagnetic metals like iron.  相似文献   

17.
The results of neutron diffraction studies of the La0.70Sr0.30MnO2.85 compound and its behavior in an external magnetic field are stated. It is established that in the 4–300 K temperature range, two structural perovskite phases coexist in the sample, which differ in symmetry (groups R[`3]cR\bar 3c and I4/mcm). The reason for the phase separation is the clustering of oxygen vacancies. The temperature (4–300 K) and field (0–140 kOe) dependences of the specific magnetic moment are measured. It is found that in zero external field, the magnetic state of La0.70Sr0.30MnO2.85 is a cluster spin glass, which is the result of frustration of Mn3+-O-Mn3+ exchange interactions. An increase in external magnetic field up to 10 kOe leads to fragmentation of ferromagnetic clusters and then to an increase in the degree of polarization of local spins of manganese and the emergence of long-range ferromagnetic order. With increasing magnetic field up to 140 kOe, the magnetic ordering temperature reaches 160 K. The causes of the structural and magnetic phase separation of this composition and formation mechanism of its spin-glass magnetic state are analyzed.  相似文献   

18.
Demidov  E. S.  Podol’skii  V. V.  Lesnikov  V. P.  Levchuk  S. A.  Gusev  S. N.  Karzanov  V. V.  Filatov  D. O. 《JETP Letters》2010,90(12):754-757

Ferromagnetic resonance (FMR) with an anomalous angular dependence has been observed in the Ge:(Mn, Al)/GaAs nanolayers deposited from laser plasma at a reduced temperature of 150°C. The resonance is associated with the needle-like inclusions of a high-temperature ferromagnetic phase with the Curie temperature T C > 293 K. Such a magnetic anisotropy is confirmed by the atomicforce and magneticforce microscopy of a side chip. A low-temperature ferromagnetic phase with normal FMR and T C < 212 K is formed between the needle-like inclusions. This phase manifests itself in the anomalous Hall effect at 77 K and probably is a solid solution of manganese in germanium.

  相似文献   

19.
A new spintronics material with the Curie temperature above room temperature, the ZnSiAs2 chalcopyrite doped with 1 and 2 wt % Mn, is synthesized. The magnetization, electrical resistivity, magnetoresistance, and the Hall effect of these compositions are studied. The temperature dependence of the electrical resistivity follows a semiconducting pattern with an activation energy of 0.12–0.38 eV (in the temperature range 124 K ≤ T ≤ 263 K for both compositions). The hole mobility and concentration are 1.33, 2.13 cm2/V s and 2.2 × 1016, 8 × 1016 cm−3 at T = 293 K for the 1 and 2 wt % Mn compositions, respectively. The magnetoresistance of both compositions, including the region of the Curie point, does not exceed 0.4%. The temperature dependence of the magnetization M(T) of both compositions exhibits a complicated character; indeed, for T ≤ 15 K, it is characteristic of superparamagnets, while for T > 15 K, spontaneous magnetization appears which correspond to a decreased magnetic moment per formula unit as compared to that which would be observed upon complete ferromagnetic ordering of Mn2+ spins or antiferromagnetic ordering of spins of the Mn2+ and Mn3+ ions. Thus, for T > 15 K, it is a frustrated ferro- or ferrimagnet. It is found that, unlike the conventional superparamagnets, the cluster moment μ c in these compositions depends on the magnetic field: ∼12000–20000μB for H = 0.1 kOe, ∼52–55μB for H = 11 kOe, and ∼8.6–11.0μB at H = 50 kOe for the compositions with 1 and 2 wt % Mn, respectively. The specific features of the magnetic properties are explained by the competition between the carrier-mediated exchange and superexchange interactions.  相似文献   

20.
Ferromagnetic resonance (FMR) with an anomalous angular dependence has been observed in the Ge:(Mn, Al)/GaAs nanolayers deposited from laser plasma at a reduced temperature of 150°C. The resonance is associated with the needle-like inclusions of a high-temperature ferromagnetic phase with the Curie temperature T C > 293 K. Such a magnetic anisotropy is confirmed by the atomicforce and magneticforce microscopy of a side chip. A low-temperature ferromagnetic phase with normal FMR and T C < 212 K is formed between the needle-like inclusions. This phase manifests itself in the anomalous Hall effect at 77 K and probably is a solid solution of manganese in germanium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号