首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The cavity magnomechanical system has become a promising platform for preparing macroscopic quantum states. In this work, a scheme for generating the steady-state quadrature squeezing of the magnon and phonon modes in a cavity magnomechanical system is presented. This scheme uses a degenerate microwave parametric amplifier (PA) inside the microwave cavity. It is found that the squeezing of the cavity mode produced by the PA can be transferred to the magnon mode due to the cavity-magnon beamsplitter-like interaction, and the squeezing of the magnon mode can be further transferred to the phonon mode due to the magnon-phonon beamsplitter-like interaction induced by driving the magnon mode with a red-detuned microwave field. The effects of the parametric gain and phase of the PA, the magnon-cavity coupling strength, the power of the magnon drive, and the temperature of the environment on the squeezing of the magnon and phonon modes have been evaluated. The results show that the squeezing of the magnon and phonon modes is robust against the temperature of the environment.  相似文献   

2.
This study presents nonreciprocal transmission and nonreciprocal magnon–phonon entanglement in a spinning microwave magnomechanical system. This system consists of microwave photons, magnon modes, and phonons. These are created by the vibrational mode of a yttrium iron garnet sphere. This investigation reveals that nonreciprocity is caused by the light that is circulating in a resonator that is experiencing a Fizeau shift. This leads to a difference in the effective detuning frequency of the photon for forwarding and backward drives. A super-strong transmission isolation rate (>100 dB) and a strong entanglement isolation rate (≈50 dB) are obtained by applying the experimental parameters. This scheme opens a new route for exploiting a variety of nonreciprocal effects, and it provides the theoretical basis for the design and realization of magnetically controllable isolators and diodes.  相似文献   

3.
We analyze the entanglement evolution of two cavity photons being affected by the dissipation of two individual reservoirs. Under an arbitrary local unitary operation on the initial state, it is shown that there is only one parameter which changes the entanglement dynamics. For the bipartite subsystems, we show that the entanglement of the cavity photons is correlated with that of the reservoirs, although the local operation can delay the time at which the photon entanglement disappears and advance the time at which the reservoir entanglement appears. Furthermore, via a new defined four-qubit entanglement measure and two three-qubit entanglement measures, we study the multipartite entanglement evolution in the composite system, which allows us to analyze quantitatively both bipartite and multipartite entanglement within a unified framework. In addition, we also discuss the entanglement evolution with an arbitrary initial state.  相似文献   

4.
《Comptes Rendus Physique》2016,17(7):729-739
The techniques of microwave quantum optics are applied to collective spin excitations in a macroscopic sphere of a ferromagnetic insulator. We demonstrate, in the single-magnon limit, strong coupling between a magnetostatic mode in the sphere and a microwave cavity mode. Moreover, we introduce a superconducting qubit in the cavity and couple the qubit with the magnon excitation via the virtual photon excitation. We observe the magnon–vacuum-induced Rabi splitting. The hybrid quantum system enables generation and characterization of non-classical quantum states of magnons.  相似文献   

5.
We investigate the entanglement dynamics of a quantum system consisting of three superconducting charge qubits (SCQs) interacting with a microwave field. For separable and entangled states of the SCQs, the evolutions are studied under various photon numbers of cavity field. The results show that the amplitude and period of the bipartite entanglement square concurrences can be controlled by the choice of initial states of SCQs and photon numberof cavity field, respectively. This simple model of a quantum register allows us to understand the dynamic process of the quantum storage of information carried by charge qubit.  相似文献   

6.
The dynamics of the entanglement for a solid polariton system is investigated. The polariton system is a photon-phonon complex and its time-dependent characteristic function in the Wigner representation for the system is obtained analytically. It is found that when the photon field is initially prepared in the squeezed vacuum state, and the phonon in the thermal state, the polariton system can evolve into a two-mode Gaussian mixed state. The entanglement between photon and phonon turns out to be apparently dependent on the squeezing parameter and exhibits a critical behavior with respect to the temperature.  相似文献   

7.
A model for two nondegenerate cavity fields coupled through a reservoir is considered. Such a model can be employed for the study of Raman scattering in which the Stokes and anti-Stokes fields indirectly interact via a bath of phonon. An analysis for appearance of quantum entanglement between the fields and evaluation of the entanglement measure depending on initial states of the fields and on a state of the phonon reservoir is given. The text was submitted by the author in English.  相似文献   

8.
It is shown how to generate stationary entanglement between light and microwave in a hybrid opto-electro-magnonical system which mainly consists of a microwave cavity, a yttrium iron garnet (YIG) sphere, and a nanofiber. The optical modes in nanofiber can evanescently be coupled to whispering gallery modes, that are able to interact with magnon mode via spin–orbit interaction, in YIG sphere, while the microwave cavity photons and magnons are coupled through magnetic dipole interaction simultaneously. Under reasonable parameter regimes, pretty amount of entanglement can be generated, and it also shows persistence against temperature. The present work is expected to provide a new perspective for building more advanced and comprehensive quantum networks along with magnons for fast-developing quantum technologies and for studying the macroscopic quantum phenomena.  相似文献   

9.
A model of the photon-phonon interaction via anti-Stokes light has been proposed to investigate the squeezing properties of phonon mode. The behavior of initial anti-Stokes light with complex statistics has been studied. It is shown that the squeezing of phonon mode can appear under certain conditions.  相似文献   

10.
A standard model is suggested to explore correlation features of two spatially separated optomechanical cavities. The cavities are coupled through the photon-hopping process. In particular, we investigate the generation of entanglement between mechanical resonators in the strong coupling regime and the two cavities are assumed to be driven by a coherent laser field. In order to quantify entanglement we use the logarithmic negativity. The analytical solutions are presented for the system in a parameter regime very close to the current experimental results. We show that in the presence of the photon hopping process between the cavities, the two mechanical resonators and the field modes can be entangled. This shows clearly that the entanglement can be transfer via radiation pressure of a photon hopping coupling from the intracavity photon-phonon entanglements to an inter-cavity photon-photon or phonon-phonon entanglement.  相似文献   

11.
邢贵超  夏云杰 《物理学报》2018,67(7):70301-070301
研究了与热库耦合的光学腔中三个相互作用的二能级原子间的纠缠动力学.采用拉普拉斯变换和下限共生等方法,通过数值计算,分析了原子间三体纠缠的演化以及腔场与热库间的两体纠缠演化,讨论了各耦合参数对系统纠缠演化的影响.研究结果表明:原子间纠缠在短时间内随着原子间耦合强度的增加而增加,随原子与腔场耦合强度的增加而减小,在长时极限下趋于一稳定值;体系的非马尔科夫性由原子与腔场的耦合强度以及热库的谱宽度共同决定,当热库与腔场为强耦合时,原子与腔场组成的系统遵循非马尔科夫动力学,此时随着热库谱宽的增加,原子系统由非马尔科夫性变为马尔科夫性,随着谱宽的继续增加,原子与腔场组成的系统遵循马尔科夫动力学,原子系统又表现出非马尔科夫性;调整腔场与热库的失谐可以有效抑制热库耗散对纠缠衰减的影响.  相似文献   

12.
The spectrum of energy and eigenstates of an hybrid cavity optomechanical system, where a cavity field mode interacts with a mechanical mode of a vibrating end mirror via radiation pressure and with a two level atom via electric dipole interaction are investigated. In the spirit of approximations developed for the quantum Rabi model beyond rotating-wave approximation (RWA), the so-called generalized RWA (GRWA) to diagonalize the tripartite Hamiltonian for arbitrary large couplings is implemented. Notably, the GRWA approach still allows to rewrite the hybrid Hamiltonian in a bipartite form, like a Rabi model with dressed atom-field states (polaritons) coupled to mechanical modes through reparametrized coupling strength and Rabi frequency. A more accurate energy spectrum for a wide range of values of the atom-photon and photon–phonon couplings, when compared to the RWA results is found. The fidelity between the numerical eigenstates and its approximated counterparts is also calculated. The degree of polariton-phonon entanglement of the eigenstates presents a non-monotonic behavior as the atom-photon coupling varies, in contrast to the characteristic monotonic increase in the RWA treatment.  相似文献   

13.
It remains a great challenge to realize direct manipulation of a nitrogen-vacancy(NV) spin at the single-quantum level with a microwave(MW) cavity. As an alternative, a hybrid system with the spin–phonon–photon triple interactions mediated by a squeezed cantilever-type harmonic resonator is proposed. According to the general mechanical parametric amplification of this in-between phonon mode, the direct spin–phonon and photon–phonon couplings are both exponentially enhanced, which can even further improve the coherent manipulation of a single NV spin and MW photon with a higher efficiency. In view of this triple system with enhanced couplings and the additional sideband adjustable designs, this scheme may provide a more efficient phonon-mediated platform to bridge or manipulate the MW quantum and a single electron spin coherently. It is also hoped to evoke wider applications in the areas of quantum state transfer and preparation,ultrasensitive detection and quantum nondestructive measurement, etc.  相似文献   

14.
耦合双Tavis-Cummings模型中的纠缠演化和转移特性   总被引:1,自引:0,他引:1  
贾冉  张英杰  夏云杰 《光学学报》2012,32(11):1127003
研究了由光纤模连接的两个Tavis-Cummings模型中纠缠演化和纠缠转移的特性。结果表明,初始两原子间的纠缠可转移为另两原子间的纠缠,在纠缠转移过程中,光纤模起到中间传递的作用。纠缠的转移与初始两原子间的纠缠、原子与腔场的耦合强度以及光纤模与腔场的耦合强度、原子与腔场的失谐量和腔场耗散有关。初始纠缠决定了另两原子间纠缠产生的大小;在原子与腔场的耦合强度一定的条件下,随着光纤模与腔场耦合强度的增强,纠缠转移的时间缩短,且产生的纠缠值增加;腔场耗散对纠缠演化的衰减影响是显著的,而失谐量的增加可以有效地抑制这一现象。在整个纠缠转移过程中,系统中其他任两子体系间的纠缠起到了桥梁的作用,实现了两量子纠缠态的远程传递和制备。  相似文献   

15.
We study the evolution of entanglement for a pair of two-level Rydberg atoms passing one after another into an ideal cavity filled with a single mode radiation field. The atoms interact with the cavity field via two-photon transitions. The initial joint state of two atoms that enter the cavity one after the other is unentangled. Interactions intervened by the single mode cavity photon field brings out the final two-atom mixed entangled type state. We use the well known measure appropriate for the mixed states, i.e. the entanglement of formation to quantify the entanglement. We calculate the entanglement of formation of the joint two-atom state as a function of the Rabi angle, for the Fock state field, coherent field and thermal field respectively inside the cavity. The change in the magnitude of atomic entanglement with cavity photon number has been discussed.  相似文献   

16.
Nonreciprocal microwave devices, in which the transmission of waves is non-symmetric between two ports, are indispensable for the manipulation of information processing and communication. In this work, we show the nonreciprocal microwave transmission in a cavity magnonic system under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect. In contrast to the schemes based on the standard phase modulation or magnon Kerr nonlinearity, we find that the joint mechanism enables the nonreciprocal transmission even at low power and makes us obtain a high nonreciprocal isolation ratio. Moreover, when two microwave modes are coupled to the magnon mode via a different coupling strength, the presented strong nonreciprocal response occurs, and it makes the nonreciprocal transmission manipulating by the magnetic field within a large adjustable range possible, which overcomes narrow operating bandwidths. This study may provide promising opportunities to realize nonreciprocal structures for wave transmission.  相似文献   

17.
PbI2/MoS2,as a typical van der Waals(vdW)heterostructure,has attracted intensive attention owing to its remarkable electronic and optoelectronic properties.In this work,the effect of defects on the electronic structures of a PbI2/MoS2 heterointerface has been systematically investigated.The manner in which the defects modulate the band structure of PbI2/MoS2,including the band gap,band edge,band alignment,and defect energy-level density within the band gap is discussed herein.It is shown that sulfur defects tune the band gaps,iodine defects shift the positions of the band edge and Fermi level,and lead defects realize the conversions between the straddling-gap band alignment and valence-band-aligned gap,thus enhancing the light-absorption ability of the material.  相似文献   

18.
We investigate the experimental feasibility of realizing quantum information transfer (QIT) and entanglement with SQUID qubits in a microwave cavity via dark states. Realistic system parameters are presented. Our results show that QIT and entanglement with two-SQUID qubits can be achieved with a high fidelity. The present scheme is tolerant to device parameter nonuniformity. We also show that the strong coupling limit can be achieved with SQUID qubits in a microwave cavity. Thus, cavity-SQUID systems provide a new way for production of nonclassical microwave source and quantum communication.  相似文献   

19.
使一对纠缠的二能级原子之一与单模真空腔场发生共振相互作用,通过选择不同的演化时间,对这个三体系统的其中之一做选择性测量,可调节另外两体的纠缠状态。在不做测量时,研究了在不同的初始状态下,三体纠缠及三体中两两纠缠的演化特性。结果表明,该体系纠缠都呈现周期性的振荡,特别是,通过选择合适的初始状态和演化时间可生成强壮纠缠态———W纠缠态;在特定演化时刻,可使两纠缠原子的纠缠信息完全转化到腔外原子和腔场中去。  相似文献   

20.
Hybridized magnonic–photonic systems promise novel applications for future information processing technologies. Here, a hybrid magnonic system comprising of a qutrit (Λ-type three-level atom) and a ferromagnetic YIG sphere is considered. Indeed, the whole system is driven by two light fields under the influence of the thermal environment. The indirect magnon–atom interaction is established via the virtual photon exchange. The associated Lindblad master equation is derived and its solution is found to investigate the nonclassical feature, especially in the steady-state solution. Generally, the system shows considerable nonclassicality, that is, strong magnon antibunching and magnon blockade. In fact, the feasibility of using such a hybrid system to prepare a single-magnon source based on magnon blockade effects we theoretically demonstrated. Besides, the considered system may be exploited to generate robust and stable magnon–atom entanglement. The appearance of magnon blockade and magnon–atom entanglement in the Λ-type atom may have its origin in the fact that the atom is trapped in different superposition states, induced by the quantum interference phenomenon. The proposed model and the corresponding results may open up an intriguing prospect to prepare a single-magnon source and provide further benefits through concatenating with photons in optomagnonic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号