首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intrinsic gas-phase stability of the IrCl(6)(3-) trianion and its microsolvated clusters, IrCl(6)(3-).(H(2)O)(n) n = 1-10, have been investigated using density functional theory (DFT) calculations. Although IrCl(6)(3-) is known to exist as a stable complex ion in bulk solutions, our calculations indicate that the bare trianion is metastable with respect to decay via both electron detachment and ionic fragmentation. To estimate the lifetime of IrCl(6)(3-), we have computed the electron tunneling probability using an adaption of the Wentzel-Kramer-Brillouin theory and predict that the trianion will decay spontaneously via electron tunneling on a time scale of 2.4 x 10(-13) s. The global minimum structure for IrCl(6)(3-).H(2)O was found to contain a bifurcated hydrogen bond, whereas for IrCl(6)(3-).(H(2)O)(2), two low energy minima were identified; one involving two bifurcated water-ion hydrogen bonds and a second combining a bifurcated hydrogen bond with a water-water hydrogen bond. Clusters based on each of these structural motifs were obtained for all of the n = 3-10 systems, and the effect of solvation on the possible decay pathways was explored. The calculations reveal that solvation stabilizes IrCl(6)(3-) with respect to both electron detachment decay and ionic fragmentation, with the magnitude of the repulsive Coulomb barrier for ionic fragmentation increasing smoothly with sequential solvation. This study is the first to compare the propensity for electron detachment versus ionic fragmentation decay for a sequentially solvated triply charged anion.  相似文献   

2.
We have extended our previous experiment [Schauer et al., Phys. Rev. Lett. 65, 625 (1990)] where we had produced small gas-phase dianion clusters of C(n) (2-)(n > or =7) by means of sputtering a graphite surface by Cs(+) ion bombardment. Our detection sensitivity for small C(n) (2-) could now be increased by a factor of about 50 for odd n. Nevertheless, a search for the elusive pentamer dianion of C(5) (2-) was not successful. As an upper limit, the sputtered flux of C(5) (2-) must be at least a factor of 5000 lower than that of C(7) (2-), provided that the lifetime of C(5) (2-) is sufficiently long to allow its detection by mass spectrometry. When oxygen gas (flooding with either O(2) or with N(2)O) was supplied to the Cs(+)-bombarded graphite surface, small dianions of OC(n) (2-)(5< or =n < or =14) and O(2)C(7) (2-) were observed in addition to C(n) (2-)(n > or =7). Similarly, Cs(+) sputtering of graphite with simultaneous SF(6) gas flooding produced SC(n) (2-)(6< or =n< or =18). Mixed nitrogen-carbon or fluorine-carbon dianion clusters could not be observed by these means. Attempts to detect mixed metal-fluoride dianions for SF(6) gas flooding of various Cs(+)-bombarded metal surfaces were successful for the case of Zr, where metastable ZrF(6) (2-) was observed. Cs(+) bombardment of a silicon carbide (SiC) wafer produced SiC(n) (2-) (n=6,8,10). When oxygen gas was supplied to the Cs(+)-bombarded SiC surface, small dianions of SiOC(n) (2-) (n=4,6,8) and of SiO(2)C(n) (2-) (n=4,6) as well as a heavier unidentified dianion (at mz=98.5) were observed. For toluene (C(7)H(8)) vapor flooding of a Cs(+)-bombarded graphite surface, several hydrocarbon dianion clusters of C(n)H(m) (2-)(n> or =7) were produced in addition to C(n) (2-)(n> or =7), while smaller C(n)H(m) (2-) with n< or =6 could not be observed. BeC(n) (2-) (n=4,6,8,10), Be(2)C(6) (2-), as well as BeC(8)H(m) (2-) (with m=2 and/or m=1) were observed for toluene vapor flooding of a Cs(+)-bombarded beryllium metal foil. The metastable pentamer (9)Be(12)C(4) (2-) at mz=28.5 was the smallest and lightest dianion molecule that we could detect. The small dianion clusters of SC(n) (2-), OC(n) (2-), BeC(n) (2-), and SiO(m)C(n) (2-) (m=0,1,2) have different abundance patterns. A resemblance exists between the abundance patterns of BeC(n) (2-) and SiC(n) (2-), even though calculated molecular structures of BeC(6) (2-) and SiC(6) (2-) are different. The abundance pattern of SC(n) (2-) is fairly similar to that of C(n) (2-).  相似文献   

3.
Al42 - is a prototype structural unit of a new class of "all-metal aromatic" molecules. Without stabilizing counterions this species is unstable with respect to electron autodetachment in the gas phase. We estimated the height of the repulsive Coulomb barrier to approximately 2.7 eV and calculated a lifetime of 9 fs. This is a short lifetime: The only way to study the isolated dianion experimentally is to use electron scattering techniques. Investigations of the validity of bound-state quantum chemical calculations on the isolated species show that the results suffer from significant admixture of continuum states to the bound-state wave function depending on the basis set. Calculations of molecular properties can therefore give essentially arbitrary results for this ill-defined system, as is demonstrated for the energy and nuclear magnetic shieldings. This substantiates that results from calculations on the isolated dianion should be approached with caution.  相似文献   

4.
C60(2-) and C70(2-) dianions have been produced by electrospray of the monoanions and subsequent electron pickup in a Na vapor cell. The dianions were stored in an electrostatic ring and their decay by electron emission was measured up to 1 s after injection. While C70(2-) ions are stable on this time scale, except for a small fraction of the ions which have been excited by gas collisions, most of the C60(2-) ions decay on a millisecond time scale, with a lifetime depending strongly on their internal temperature. The results can be modeled as decay by electron tunneling through a Coulomb barrier, mainly from thermally populated triplet states about 120 meV above a singlet ground state. At times longer than about 100 ms, the absorption of blackbody radiation plays an important role for the decay of initially cold ions. The tunneling rates obtained from the modeling, combined with WKB estimates of the barrier penetration, give a ground-state energy 200+/-30 meV above the energy of the monoanion plus a free electron and a ground-state lifetime of the order of 20 s.  相似文献   

5.
The (TCNE)(2)(2)(-) dimer dianion formed by connecting two TCNE(-) anions via a four-center, two-electron pi-orbital bond is studied using ab initio theoretical methods and a model designed to simulate the stabilization due to surrounding counterions. (TCNE)(2)(2)(-) is examined as an isolated species and in a solvation environment representative of tetrahydrofuran (THF) solvent. The intrinsic strength of this novel bond and the influences of internal Coulomb repulsions, of solvent stabilization and screening, and of counterion stabilization are all considered. The geometry, electronic and thermodynamic stabilities, electronic absorption spectra, and electron detachment energies of this novel dianion are examined to help understand recent experimental findings. Our findings lead us to conclude that the (TCNE)(2)(2)(-) dianion's observation in solid materials is likely a result of its stabilization by surrounding countercations. Moreover, our results suggest the dianion is geometrically metastable in THF solution, with a barrier to dissociation into two TCNE(-) anions that can be quickly surmounted at room temperature but not at 77 K. This finding is consistent with what is observed in laboratory studies of low- and room-temperature solutions of salts containing this dianion. Finally, we assign two peaks observed (at 77 K in methyl-THF glass) in the UV-vis region to (1) electronic transitions involving the four-center orbitals and (2) detachment of an electron from the four-center pi-bonding orbital to generate (TCNE)(2)(-) + e(-).  相似文献   

6.
C(120)O comprises two C(60) cages linked by a furan ring and is formed by reactions of C(60)O and C(60). We have produced doubly charged anions of this fullerene dimer (C(120)O(2-)) and studied its electronic structure and stability using photoelectron spectroscopy and theoretical calculations. High resolution and vibrationally resolved photoelectron spectra were obtained at 70 K and at several photon energies. The second electron affinity of C(120)O was measured to be 1.02+/-0.03 eV and the intramolecular Coulomb repulsion was estimated to be about 0.8 eV in C(120)O(2-) on the basis of the observed repulsive Coulomb barrier. A low-lying excited state ((2)B(1)) was also observed for C(120)O(-) at 0.09 eV above the ground state ((2)A(1)). The C(120)O(2-) dianion can be viewed as a single electron on each C(60) ball very weakly coupled. Theoretical calculations showed that the singlet and triplet states of C(120)O(2-) are nearly degenerate and can both be present in the experiment. The computed electron binding energies and excitation energies, as well as Franck-Condon factors, are used to help interpret the photoelectron spectra. A C-C bond-cleaved isomer, C(60)-O-C(60) (2-), was also observed with a higher electron binding energy of 1.54 eV.  相似文献   

7.
We probe the repulsive Coulomb barrier of the doubly charged anion PtBr(4) (2-) by photodetachment spectroscopy. The results are discussed in terms of models for the photoemission process, the excitation spectrum of PtBr(4) (2-), and calculations of the energy-dependent tunneling probability for various model potentials.  相似文献   

8.
In an attempt to shed light on the mechanism by which gaseous samples of negatively charged oligonucleotides undergo extremely slow (i.e., over 1-1000 s) charge loss, we have carried out molecular dynamics simulations on an oligonucleotide anion, T(5)(3-), containing five thymine, deoxyribose, and phosphate units in which the first, third, and fifth phosphates are negatively charged. The study is aimed at determining the rate at which an electron is detached from such a trianion by way of an internal Coulomb repulsion induced event. In this process, the intrinsic 5.0-5.1 eV electron binding strength of each phosphate site is reduced by the repulsive Coulomb potentials of the other two negative sites. As geometrical fluctuations cause the distances among the three negative phosphate sites to change, this causes the Coulomb repulsion energies at these sites to fluctuate. Once the Coulomb potential at any phosphate site exceeds ca. 5 eV, the electron on that site is able to undergo autodetachment. Although such an electron must tunnel through a barrier to escape, it is shown that the tunneling rate is not the rate-limiting step in electron loss; instead, it is the rate at which geometrical fluctuations cause the Coulomb potentials to exceed 5 eV that determines the rate of electron loss. Because these rates are extremely slow, special techniques had to be introduced to allow results of dynamics simulations on more flexible models of T(5)(3-) to be extrapolated to predict the behavior of the actual T(5)(3-).  相似文献   

9.
Multiply charged anions (MCA's) are unstable relative to electron autoejection; however, the repulsive Coulomb barrier (RCB) provides electronic stability. In view of their interest in biological systems, the behavior of isolated AsO(4)(3-), PO(4)(3-), SO(4)(2-), and SeO(4)(2-) in the gas phase and in solution has been studied. To calculate the RCB values, the electrostatic and point charge model-two methods currently used in the literature-are applied, together with a recently introduced Conceptual Density Functional Theory (DFT) based approach. The relative stability of the above-mentioned MCA's is compared. The trends of the RCB are analyzed by including analogous compounds from the second and third row and by passing from dianionic to trianionic systems. Considering the effect of solvent, using the SCI-PCM solvent model, the evolution of the RCB when passing to higher dielectric constants is evaluated. The RCB is related to the properties of the system as polarizability/softness. Both a numerical and a conceptual correlation between the RCB and the global softness is found.  相似文献   

10.
(H2O)(6) (-) appears as a "magic" number water cluster in (H2O)(n) (-) mass spectra. The structure of the (H2O)(6) (-) isomer dominating the experimental population has been established only recently [N. I. Hammer et al., J. Phys. Chem. A 109, 7896 (2005)], and the most noteworthy characteristic of this isomer is the localization of the excess electron in the vicinity of a double-acceptor monomer. In the present work, we use a quantum Drude model to characterize the low-energy isomers and the finite temperature properties of (H2O)(6) (-). Comparison with ab initio calculations shows that the use of a water model employing distributed polarizabilities and distributed repulsive sites is necessary to correctly reproduce the energy ordering of the low-lying isomers. Both the simulations and the ab initio calculations predict that there are several isomers of (H2O)(6) (-) significantly lower in energy than the experimentally observed species, suggesting that the experimental distribution is far from equilibrium.  相似文献   

11.
Density functional theory B3PW91/6-31+G* calculations on BenCm (n=1-10; m=1, 2, ..., to 11-n) clusters have been carried out to examine the effect of cluster size, relative composition, binding energy per atom, HOMO-LUMO gap, vertical ionization potential, and electron affinity on their relative stabilities. The most stable planar cyclic conformations of these clusters always show at least a set of two carbon atoms between two beryllium atoms, while structures where beryllium atoms cluster together, or allow the intercalation of one carbon atom between two of them, generally seem to be the least stable ones. Clusters containing 1, 2, and 3 beryllium atoms (Be2C8, Be3C6, Be2C6, BeC6, Be2C4, BeC4, Be2C2, and BeC2) are identified as clusters of "magic numbers" in terms of their high binding energy per atom, high HOMO-LUMO gap, vertical ionization potential, and second difference in energy per beryllium atom.  相似文献   

12.
We present the first photoelectron (PE) spectra of polypeptide polyanions. Combining PE spectroscopy and mass spectrometry provides a direct measurement of the stability of the polyanions with respect to electron detachment and of the repulsive energy between excess charges. The second electron affinity of gramicidin was found to amount to 2.35 +/- 0.15 eV, and the value of the repulsive Coulomb barrier was estimated to be 0.5 +/- 0.15 eV. The spectra are interpreted as resulting from a competition between delayed and direct emission.  相似文献   

13.
Reactions of Mo(2)(O(2)CCH(3))(DAniF)(3), DAniF = N,N'-di-p-anisylformamidinate, with oxamidate dianions [ArNC(O)C(O)NAr](2-), Ar = C(6)H(5) and p-anisyl, give pairs of isomeric compounds where the [Mo(2)] units are bridged by the oxamidate anions. For the alpha isomers, the C-C unit of the dianion is nearly perpendicular to the Mo-Mo bonds, and these are essentially perpendicular to each other. For the beta isomers, the corresponding C-C unit and the Mo-Mo bonds are essentially parallel to each other. Each type of isomer is stable in solution. The electronic communication as measured by the DeltaE(1/2) for the oxidation of each of the Mo(2) units is significantly better for the beta isomers. This is supported also by the appearance of what is conventionally called an intervalence charge-transfer band in the near infrared region upon oxidation of the beta isomers but not the alpha isomers. Molecular mechanics and DFT calculations help explain the relative conformations in the alpha isomers and the relative energy differences between the alpha and beta isomers.  相似文献   

14.
Two polyoxometalate Keggin-type anions, alpha-PM12O40(3-) (M = Mo, W), were transferred to the gas phase by electrospray; their electronic structure and stability were probed by photoelectron spectroscopy. These triply charged anions were found to be highly stable in the gas phase with large adiabatic electron detachment energies of 1.7 and 2.1 eV for M = Mo and W, respectively. The magnitude of the repulsive Coulomb barrier was measured as approximately 3.4 eV for both anions, providing an experimental estimate for the intramolecular Coulomb repulsion present in these highly charged anions. Density functional theory calculations were carried out and compared with the experimental data, providing insight into the electronic structure and valence molecular orbitals of the two Keggin anions. The calculations indicated that the highest occupied molecular orbital and other frontier orbitals for PM12O40(3-) are localized primarily on the mu2-oxo bridging ligands of the polyoxometalate framework, consistent with the reactivity on the mu2-oxo sites observed in solution. It was shown that the HOMO of PW12O40(3-) is stabilized relative to that of PMo12O40(3-) by approximately 0.35 eV. The experimental adiabatic electron detachment energies of PM12O40(3-) (i.e., the electron affinities of PM12O40(2-)) are combined with recent calculations on the proton affinity of PM12O40(3-) to yield O-H bond dissociation energies in PM12O39(OH)2- as approximately 5.1 eV.  相似文献   

15.
The geometric structure of the ground state and of metastable isomers of nitrosyl complexes trans-[Ru(P)(NO)(Cl)] (P = porphinate dianion) and trans-[Ru(NO)(salen)(X)]q [salen = N,N'-ethylenebis(salicylideniminate) dianion; X = Cl- (q = 0), H2O (q = +1)] was optimized within the framework of the density functional method (SVWN/LanL2DZ+6-31G). The local minima corresponding to metastable isomers with a linear NO coordination through the oxygen atom and with a side 2 NO coordination were found on the potential energy surfaces of these compounds. The second metastable states of all the three complexes have a lower energy. The difference in energies between the stable and metastable isomers is the least in the case of the complex trans-[Ru(NO)(salen)(Cl)].  相似文献   

16.
In this paper we present calculations of electron tunneling times from the ground electronic state of excess electron bubbles in ((4)He)(N) clusters (N=6500-10(7), cluster radius R=41.5-478 A), where the equilibrium bubble radius varies in the range R(b)=13.5-17.0 A. For the bubble center located at a radial distance d from the cluster surface, the tunneling transition probability was expressed as A(0)phi(d,R)exp(-betad), where beta approximately 1 A(-1) is the exponential parameter, A(0) is the preexponential factor for the bubble located at the cluster center, and phi(d,R) is a correction factor which accounts for cluster curvature effects. Electron tunneling dynamics is grossly affected by the distinct mode of motion of the electron bubble in the image potential within the cluster, which is dissipative (i.e., tau(D)tau(0)) in superfluid ((4)He)(N) clusters, where tau(D) is the bubble motional damping time (tau(D) approximately 4 x 10(-12) s for normal fluid clusters and tau(D) approximately 10 s for superfluid clusters), while tau(0) approximately 10(-9)-10(-10) s is the bubble oscillatory time. Exceedingly long tunneling lifetimes, which cannot be experimentally observed, are manifested from bubbles damped to the center of the normal fluid cluster, while for superfluid clusters electron tunneling occurs from bubbles located in the vicinity of the initial distance d near the cluster boundary. Model calculations of the cluster size dependence of the electron tunneling time (for a fixed value of d=38-39 A), with lifetimes increasing in the range of 10(-3)-0.3 s for N=10(4)-10(7), account well for the experimental data [M. Farnik and J. P. Toennies, J. Chem. Phys. 118, 4176 (2003)], manifesting cluster curvature effects on electron tunneling dynamics. The minimal cluster size for the dynamic stability of the bubble was estimated to be N=3800, which represents the threshold cluster size for which the excess electron bubble in ((4)He)(N) (-) clusters is amenable to experimental observation.  相似文献   

17.
The possible existence of the gas phase cis- and trans-maleate, i.e. completely deprotonated maleic acid (O2C–CΗ=CΗ–CO2)2–, is investigated by density functional (B3LYP) and ab-initio quantum chemical methods (MP2, CCSD(T)) using large basis sets. The calculations reveal that only the trans-isomer is Coulomb stable with respect to electron loss. The results are compared to other previously investigated dicarboxylate dianions of the general form ?O2C–R–CO2 ? with R = C2, C2X2, C2X4, and C6X4 (X = H, F). Fluorine substitution on the carbon framework helps to stabilize these doubly charged systems, and we predict that all of the aromatic fluorine substituted dicarboxylate dianions are Coulomb stable in the gas phase. Only the highest levels of theory reveal the slight stabilization of both the succinate dianion and the ortho-isomer of the phthalic acid dianion in unprecedented agreement with experiments.  相似文献   

18.
It is known that one-dimensional potentials, V(R), with a local minimum and a finite barrier towards tunneling to a free particle continuum, can support a finite number of shape resonance states. Recently, we reported a formal derivation of the semiclassical Green's function, G(SC)(E), for such V(R), with one and two local minima, which was carried out in the framework of the theory of path integrals [Th. G. Douvropoulos and C. A. Nicolaides, J. Phys. B 35, 4453 (2002); J. Chem. Phys. 119, 8235 (2003)]. The complex poles of G(SC)(E) represent the energies and the tunneling rates of the unstable states of V(R). By analyzing the structure of G(SC)(E), here it is shown how one can compute the energy, E(nu), and the radiation-less width, gamma(nu), of each resonance state beyond the Wentzel-Kramers-Brillouin approximation. In addition, the energy shift, delta(nu), due to the interaction with the continuum, is given explicitly and computed numerically. The dependence of the accuracy of the semiclassical calculation of E(nu) and of gamma(nu) on the distance from the top of the barrier is demonstrated explicitly. As an application to a real system, we computed the vibrational energies, E(nu), and the lifetimes, tau(nu), of the 4He2++, nu = 0, 1, 2, 3, 4, and 4He3He++ nu = 0, 1, 2, 3, 1sigma(g)+ states, which autodissociate to the He(+)+He+ continuum. We employed the V(R) that was computed by Wolniewicz [J. Phys. B 32, 2257 (1999)], which was reported as being accurate, over a large range of values of R, to a fraction of cm(-1). For example, for J = 0, the results for the lowest and highest vibrational levels for the 4He2+ 1sigma(g)+ state are nu = 0 level, E0 = 10,309 cm(-1) below the barrier top, tau0 = 6400 s; nu = 4 level, E4 = 96.6 cm(-1) below the barrier top, tau4 = 31 x 10(-11) s. A brief presentation is also given of the quantal methods (and their results) that were applied previously for these shape resonances, such as the amplitude, the exterior complex scaling, and the lifetime matrix methods.  相似文献   

19.
20.
The bare B(8) cluster was previously reported to be a D(7h) molecular wheel with a triplet group state. The B(8)(2-) dianion was predicted to be a closed-shell singlet and double aromatic D(7h) molecular wheel. Here we report the experimental observation of B(8)(2-) stabilized by a Li(+) cation in LiB(8)(-) and its experimental characterization using photoelectron spectroscopy. Theoretical searches lead to a C(7v) LiB(8)(-) global minimum structure, and its calculated photodetachment transitions are in good agreement with the experimental values. Except for a small out-of-plane distortion due to the asymmetric Li(+) capping, the B(8)(2-) unit in LiB(8)(-) is nearly identical to the bare B(8)(2-), suggesting it is a robust and stable structural unit and may be used as a new ligand and building block in chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号