首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We derive a combinatorial multisum expression for the number D(n, k) of partitions of n with Durfee square of order k. An immediate corollary is therefore a combinatorial formula for p(n), the number of partitions of n. We then study D(n, k) as a quasipolynomial. We consider the natural polynomial approximation \({\tilde{D}(n, k)}\) to the quasipolynomial representation of D(n, k). Numerically, the sum \({\sum_{1\leq k \leq \sqrt{n}} \tilde{D}(n, k)}\) appears to be extremely close to the initial term of the Hardy-Ramanujan-Rademacher convergent series for p(n).  相似文献   

2.
We shall call a monoid S principally weakly (weakly) left coherent if direct products of nonempty families of principally weakly (weakly) flat right S-acts are principally weakly (weakly) flat. Such monoids have not been studied in general. However, Bulman-Fleming and McDowell proved that a commutative monoid S is (weakly) coherent if and only if the act S I is weakly flat for each nonempty set I. In this article we introduce the notion of finite (principal) weak flatness for characterizing (principally) weakly left coherent monoids. Also we investigate monoids over which direct products of acts transfer an arbitrary flatness property to their components.  相似文献   

3.
In an atomic, cancellative, commutative monoid S, the elasticity of an element provides a coarse measure of its non-unique factorizations by comparing the largest and smallest values in its set of factorization lengths (called its length set). In this paper, we show that the set of length sets \({\mathcal {L}}(S)\) for any arithmetical numerical monoid S can be completely recovered from its set of elasticities R(S); therefore, R(S) is as strong a factorization invariant as \({\mathcal {L}}(S)\) in this setting. For general numerical monoids, we describe the set of elasticities as a specific collection of monotone increasing sequences with a common limit point of \(\max R(S)\).  相似文献   

4.
We study the possibility of characterizing S ∈ {2Dn(2), 2Dn+1(2)} by simple conditions when 2n+1 > 5 is a prime. Furthermore, we will show that Thompson’s conjecture is valid under some weak condition for these groups.  相似文献   

5.
We obtain the structure of the rings in which every element is either a sum or a difference of a nilpotent and an idempotent that commute. This extends the structure theorems of a commutative weakly nil-clean ring, of an abelian weakly nil-clean ring, and of a strongly nil-clean ring. As applications, this result is used to determine the 2-primal rings R such that the matrix ring \(\mathbb{M}_n (R)\) is weakly nil-clean, and to show that the endomorphism ring End D (V) over a vector space V D is weakly nil-clean if and only if it is nil-clean or dim(V) = 1 with D?= ?3.  相似文献   

6.
A topological space is said to be paranormal if every countable discrete collection of closed sets {D n : n < ω} can be expanded to a locally finite collection of open sets {U n : n < ω}, i.e., D n ? U n and D m U n ≠ 0 if and only if D m = D n . It is proved that if F: Comp → Comp is a normal functor of degree ≥ 3 and the compact space F(X) is hereditarily paranormal, then the compact space X is metrizable.  相似文献   

7.
Let N = {0, 1, · · ·, n ? 1}. A strongly idempotent self-orthogonal row Latin magic array of order n (SISORLMA(n) for short) based on N is an n × n array M satisfying the following properties: (1) each row of M is a permutation of N, and at least one column is not a permutation of N; (2) the sums of the n numbers in every row and every column are the same; (3) M is orthogonal to its transpose; (4) the main diagonal and the back diagonal of M are 0, 1, · · ·, n ? 1 from left to right. In this paper, it is proved that an SISORLMA(n) exists if and only if n ? {2, 3}. As an application, it is proved that a nonelementary rational diagonally ordered magic square exists if and only if n ? {2, 3}, and a rational diagonally ordered magic square exists if and only if n ≠ 2.  相似文献   

8.
The system of equations \(\frac{{dx}}{{dt}} = A\left( \cdot \right)x + B\left( \cdot \right)u\), where A(·) ∈ ?n × n, B(·) ∈ ?n × m, S(·) ∈ Rn × m, is considered. The elements of the matrices A(·), B(·), S(·) are uniformly bounded and are functionals of an arbitrary nature. It is assumed that there exist k elements \({\alpha _{{i_i}{j_l}}}\left( \cdot \right)\left( {l \in \overline {1,k} } \right)\) of fixed sign above the main diagonal of the matrix A(·), and each of them is the only significant element in its row and column. The other elements above the main diagonal are sufficiently small. It is assumed that m = n ?k, and the elements βij(·) of the matrix B(·) possess the property \(\left| {{\beta _{{i_s}s}}\left( \cdot \right)} \right| = {\beta _0} > 0\;at\;{i_s}\; \in \;\overline {1,n} \backslash \left\{ {{i_1}, \ldots ,{i_k}} \right\}\). The other elements of the matrix B(·) are zero. The positive definite matrix H = {hij} of the following form is constructed. The main diagonal is occupied by the positive numbers hii = hi, \({h_{{i_l}}}_{{j_l}}\, = \,{h_{{j_l}{i_l}}}\, = \, - 0.5\sqrt {{h_{{i_l}}}_{{j_l}}} \,\operatorname{sgn} \,{\alpha _{{i_l}}}_{{j_l}}\left( \cdot \right)\). The other elements of the matrix H are zero. The analysis of the derivative of the Lyapunov function V(x) = x*H–1x yields hi\(\left( {i \in \overline {1,n} } \right)\) and λi ≤ 0 \(\left( {i \in \overline {1,n} } \right)\) such that for S(·) = H?1ΛB(·), Λ = diag(λ1, ..., λn), the system of the considered equations becomes globally exponentially stable. The control is robust with respect to the elements of the matrix A(·).  相似文献   

9.
A semigroup \({\mathfrak{S}}\) of non-negative n × n matrices is indecomposable if for every pair i, jn there exists \({S\in\mathfrak{S}}\) such that (S) ij ≠ 0. We show that if there is a pair k, l such that \({\{(S)_{kl} : S\in\mathfrak{S}\}}\) is bounded then, after a simultaneous diagonal similarity, all the entries are in [0, 1]. We also provide quantitative versions of this result, as well as extensions to infinite-dimensional cases.  相似文献   

10.
We describe the diagonal reduction algebra D(gl n ) of the Lie algebra gl n in the R-matrix formalism. As a byproduct we present two families of central elements and the braided bialgebra structure of D(gl n ).  相似文献   

11.
A ring R is (weakly) nil clean provided that every element in R is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let R be abelian, and let n ∈ ?. We prove that M n (R) is nil clean if and only if R/J(R) is Boolean and M n (J(R)) is nil. Furthermore, we prove that R is weakly nil clean if and only if R is periodic; R/J(R) is ?3, B or ?3B where B is a Boolean ring, and that M n (R) is weakly nil clean if and only if M n (R) is nil clean for all n ≥ 2.  相似文献   

12.
The Gamma semigroup with parameter \(b>0\) on \(L^p(\mathbb R^+)\) is defined by
$$\begin{aligned} W_b(t)f(x)=\frac{1}{\Gamma (t)}\int _0^x(x-y)^{t-1}e^{-b(x-y)}f(y)\,dy. \end{aligned}$$
Let S denote the multiplication operator \(f(x)\rightarrow xf(x)\) with maximal domain D(S) in \(L^p(\mathbb R^+)\). The bounded operator V on \(L^p(\mathbb R^+)\) is S-Volterra if D(S) is V-invariant and \([S,V]=V^2\) on D(S). For \(1<p<\infty \), we characterize the Gamma semigroup as the unique regular semigroup \(V(\cdot )\) on \(L^p(\mathbb R^+)\) with imaginary type less than \(\pi \), such that V(1) is S-Volterra and \(V(1)u^b=Su^b\), where \(u^b(x):=e^{-bx}\).
  相似文献   

13.
Let R be a right coherent ring and D~b(R-Mod) the bounded derived category of left R-modules. Denote by D~b(R-Mod)_([G F,C]) the subcategory of D~b(R-Mod) consisting of all complexes with both finite Gorenstein flat dimension and cotorsion dimension and K~b(F ∩ C) the bounded homotopy category of flat cotorsion left R-modules. We prove that the quotient triangulated category D~b(R-Mod)_([G F,C])/K~b(F ∩ C) is triangle-equivalent to the stable category GF ∩ C of the Frobenius category of all Gorenstein flat and cotorsion left R-modules.  相似文献   

14.
Define a k-minimum-difference-representation (k-MDR) of a graph G to be a family of sets \({\{S(v): v\in V(G)\}}\) such that u and v are adjacent in G if and only if min{|S(u)?S(v)|, |S(v)?S(u)|} ≥ k. Define ρ min(G) to be the smallest k for which G has a k-MDR. In this note, we show that {ρ min(G)} is unbounded. In particular, we prove that for every k there is an n 0 such that for n > n 0 ‘almost all’ graphs of order n satisfy ρ min(G) > k. As our main tool, we prove a Ramsey-type result on traces of hypergraphs.  相似文献   

15.
M. Sedaghatjoo  V. Laan 《代数通讯》2013,41(11):4019-4030
For a monoid S, the set S × S equipped with the componentwise right S-action is called the diagonal act of S and is denoted by D(S). A monoid S is a left PP (left PSF) monoid if every principal left ideal of S is projective (strongly flat). We shall call a monoid S left P(P) if all principal left ideals of S satisfy condition (P). We shall call a monoid S weakly left P(P) monoid if the equalities as = bs, xb = yb in S imply the existence of r ∈ S such that xar = yar, rs = s. In this article, we prove that a monoid S is left PSF if and only if S is (weakly) left P(P) and D(S) is principally weakly flat. We provide examples showing that the implications left PSF ? left P(P) ? weakly left P(P) are strict. Finally, we investigate regularity of diagonal acts D(S), and we prove that for a right PP monoid S the diagonal act D(S) is regular if and only if every finite product of regular acts is regular. Furthermore, we prove that for a full transformation monoid S = 𝒯 X , D(S) is regular.  相似文献   

16.
Let G be a connected graph with vertex set V(G) = {v1, v2,..., v n }. The distance matrix D(G) = (d ij )n×n is the matrix indexed by the vertices of G, where d ij denotes the distance between the vertices v i and v j . Suppose that λ1(D) ≥ λ2(D) ≥... ≥ λ n (D) are the distance spectrum of G. The graph G is said to be determined by its D-spectrum if with respect to the distance matrix D(G), any graph having the same spectrum as G is isomorphic to G. We give the distance characteristic polynomial of some graphs with small diameter, and also prove that these graphs are determined by their D-spectra.  相似文献   

17.
A topological space is called paranormal if any countable discrete system of closed sets {Dn:n = 1, 2, 3,...} can be expanded to a locally finite system of open sets {Un:n = 1, 2, 3,...}, i.e., Dn is contained in Un for all n, and DmUn≠ Ø if and only if Dm = Dn. It is proved that if X is a countably compact space whose cube is hereditarily paranormal, then X is metrizable.  相似文献   

18.
Let M n be an n-dimensional closed submanifold of a sphere with parallel normalized mean curvature vector. Denote by S and H the squared norm of the second fundamental form and the mean curvature of M n , respectively. Assume that the fundamental group \({\pi_{1}(M^{n})}\) of M n is infinite and \({S\, \leqslant\, S(H)=n+\frac{n^{3}H^{2}}{2(n-1)}-\frac{n(n-2)H}{2(n-1)}\sqrt{n^{2}H^{2}+4(n-1)}}\), then S is constant, S = S(H), and M n is isometric to a Clifford torus \({S^{1}(\sqrt{1-r^{2}})\times S^{n-1}(r)}\) with \({r^{2}\leqslant \frac{n-1}{n}}\).  相似文献   

19.
Let g be a holomorphic or Maass Hecke newform of level D and nebentypus χD, and let a g (n) be its n-th Fourier coefficient. We consider the sum \({S_1} = \sum {_{X < n \leqslant 2X}{a_g}\left( n \right)e\left( {\alpha {n^\beta }} \right)}\) and prove that S 1 has an asymptotic formula when β = 1/2 and α is close to \(\pm 2\sqrt {q/D}\) for positive integer qX/4 and X sufficiently large. And when 0 < β < 1 and α, β fail to meet the above condition, we obtain upper bounds of S 1. We also consider the sum \({S_2} = \sum {_{n > 0}{a_g}\left( n \right)e\left( {\alpha {n^\beta }} \right)\phi \left( {n/X} \right)}\) with ø(x) ∈ C c (0,+∞) and prove that S 2 has better upper bounds than S 1 at some special α and β.  相似文献   

20.
Let D be an open connected subset of the complex plane C with sufficiently smooth boundary ?D. Perturbing the Cauchy problem for the Cauchy–Riemann system ??u = f in D with boundary data on a closed subset S ? ?D, we obtain a family of mixed problems of the Zaremba-type for the Laplace equation depending on a small parameter ε ∈ (0, 1] in the boundary condition. Despite the fact that the mixed problems include noncoercive boundary conditions on ?D\S, each of them has a unique solution in some appropriate Hilbert space H +(D) densely embedded in the Lebesgue space L 2(?D) and the Sobolev–Slobodetski? space H 1/2?δ(D) for every δ > 0. The corresponding family of the solutions {u ε} converges to a solution to the Cauchy problem in H +(D) (if the latter exists). Moreover, the existence of a solution to the Cauchy problem in H +(D) is equivalent to boundedness of the family {u ε} in this space. Thus, we propose solvability conditions for the Cauchy problem and an effective method of constructing a solution in the form of Carleman-type formulas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号