首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let Mn(R) be the algebra of all n×n matrices over a unital commutative ring R with 2 invertible, V be an R-module. It is shown in this article that, if a symmetric bilinear map {·,·} from Mn(RMn(R) to V satisfies the condition that {u,u}={e,u} whenever u2=u, then there exists a linear map f from Mn(R) to V such that . Applying the main result we prove that an invertible linear transformation θ on Mn(R) preserves idempotent matrices if and only if it is a Jordan automorphism, and a linear transformation δ on Mn(R) is a Jordan derivation if and only if it is Jordan derivable at all idempotent points.  相似文献   

2.
Let G=(V,E) be a connected graph. For a symmetric, integer-valued function δ on V×V, where K is an integer constant, N0 is the set of nonnegative integers, and Z is the set of integers, we define a C-mapping by F(u,v,m)=δ(u,v)+mK. A coloring c of G is an F-coloring if F(u,v,|c(u)−c(v)|)?0 for every two distinct vertices u and v of G. The maximum color assigned by c to a vertex of G is the value of c, and the F-chromatic number F(G) is the minimum value among all F-colorings of G. For an ordering of the vertices of G, a greedy F-coloring c of s is defined by (1) c(v1)=1 and (2) for each i with 1?i<n, c(vi+1) is the smallest positive integer p such that F(vj,vi+1,|c(vj)−p|)?0, for each j with 1?j?i. The greedy F-chromatic number gF(s) of s is the maximum color assigned by c to a vertex of G. The greedy F-chromatic number of G is gF(G)=min{gF(s)} over all orderings s of V. The Grundy F-chromatic number is GF(G)=max{gF(s)} over all orderings s of V. It is shown that gF(G)=F(G) for every graph G and every F-coloring defined on G. The parameters gF(G) and GF(G) are studied and compared for a special case of the C-mapping F on a connected graph G, where δ(u,v) is the distance between u and v and .  相似文献   

3.
Let Mn be the algebra of all n×n matrix over a field F, A a rank one matrix in Mn. In this article it is shown that if a bilinear map ? from Mn×Mn to Mn satisfies the condition that ?(u,v)=?(I,A) whenever u·v=A, then there exists a linear map φ from Mn to Mn such that . If ? is further assumed to be symmetric then there exists a matrix B such that ?(x,y)=tr(xy)B for all x,yMn. Applying the main result we prove that if a linear map on Mn is desirable at a rank one matrix then it is a derivation, and if an invertible linear map on Mn is automorphisable at a rank one matrix then it is an automorphism. In other words, each rank one matrix in Mn is an all-desirable point and an all-automorphisable point, respectively.  相似文献   

4.
For a pair of n×n Hermitian matrices H and K, a real ternary homogeneous polynomial defined by F(t,x,y)=det(tIn+xH+yK) is hyperbolic with respect to (1,0,0). The Fiedler conjecture (or Lax conjecture) is recently affirmed, namely, for any real ternary hyperbolic polynomial F(t,x,y), there exist real symmetric matrices S1 and S2 such that F(t,x,y)=det(tIn+xS1+yS2). In this paper, we give a constructive proof of the existence of symmetric matrices for the ternary forms associated with trigonometric polynomials.  相似文献   

5.
For a graph G=(V,E) with vertex-set V={1,2,…,n}, which is allowed to have parallel edges, and for a field F, let S(G;F) be the set of all F-valued symmetric n×n matrices A which represent G. The maximum corank of a graph G is the maximum possible corank over all AS(G;F). If (G1,G2) is a (?2)-separation, we give a formula which relates the maximum corank of G to the maximum corank of some small variations of G1 and G2.  相似文献   

6.
We prove the existence of solutions of the Cauchy problem for the doubly nonlinear evolution equation: dv(t)/dt+Vφt(u(t))∋f(t), v(t)∈Hψ(u(t)), 0<t<T, where Hψ (respectively, Vφt) denotes the subdifferential operator of a proper lower semicontinuous functional ψ (respectively, φt explicitly depending on t) from a Hilbert space H (respectively, reflexive Banach space V) into (−∞,+∞] and f is given. To do so, we suppose that V?HH?V compactly and densely, and we also assume smoothness in t, boundedness and coercivity of φt in an appropriate sense, but use neither strong monotonicity nor boundedness of Hψ. The method of our proof relies on approximation problems in H and a couple of energy inequalities. We also treat the initial-boundary value problem of a non-autonomous degenerate elliptic-parabolic problem.  相似文献   

7.
Let V?, W?, W and X be Hilbert spaces (0 < ? ? 1) with V? ? W? ? W ? X algebraically and topologically, each space being dense in the one that follows it. For each t? [0, T] let a?(t; u, v), b?(t; u, v) and b(t; u, v) be continuous sesqui-linear forms on V?, W? and W, respectively, which satisfy certain ellipticity conditions. Consider the two equations a?(t; u?, v) + b?(t; u?, v) = 〈f?, v〉 (v?V?) and (u′, v)x + b(t; u, v) = 〈f, v〉 (v?W). Estimates are obtained on the rate of convergence of u? to u, assuming a?(t; u, v) → (u, v)x and b?(t; u, v) → b(t; u, v) in an appropriate sense. These results are then applied to singular perturbation of a class of parabolic boundary value problems.  相似文献   

8.
Let V be a linear subspace of Mn,p(K) with codimension lesser than n, where K is an arbitrary field and n?p. In a recent work of the author, it was proven that V is always spanned by its rank p matrices unless n=p=2 and K?F2. Here, we give a sufficient condition on codim V for V to be spanned by its rank r matrices for a given r∈?1,p-1?. This involves a generalization of the Gerstenhaber theorem on linear subspaces of nilpotent matrices.  相似文献   

9.
Let G be a graph. If u,vV(G), a u-vshortest path of G is a path linking u and v with minimum number of edges. The closed interval I[u,v] consists of all vertices lying in some u-v shortest path of G. For SV(G), the set I[S] is the union of all sets I[u,v] for u,vS. We say that S is a convex set if I[S]=S. The convex hull of S, denoted Ih[S], is the smallest convex set containing S. A set S is a hull set of G if Ih[S]=V(G). The cardinality of a minimum hull set of G is the hull number of G, denoted by hn(G). In this work we prove that deciding whether hn(G)≤k is NP-complete.We also present polynomial-time algorithms for computing hn(G) when G is a unit interval graph, a cograph or a split graph.  相似文献   

10.
A chordal graph is the intersection graph of a family of subtrees of a host tree. In this paper we generalize this. A graph G=(V,E) has an (h,s,t)-representation if there exists a host tree T of maximum degree at most h, and a family of subtrees {Sv}vV of T, all of maximum degree at most s, such that uvE if and only if |SuSv|?t. For given h,s, and t, there exist infinitely many forbidden induced subgraphs for the class of (h,s,t)-graphs. On the other hand, for fixed h?s?3, every graph is an (h,s,t)-graph provided that we take t large enough. Under certain conditions representations of larger graphs can be obtained from those of smaller ones by amalgamation procedures. Other representability and non-representability results are presented as well.  相似文献   

11.
Let F be a field. In [Djokovic, Product of two involutions, Arch. Math. 18 (1967) 582-584] it was proved that a matrix AFn×n can be written as A=BC, for some involutions B,CFn×n, if and only if A is similar to A-1. In this paper we describe the possible eigenvalues of the matrices B and C.As a consequence, in case charF≠2, we describe the possible similarity classes of (P11P22)P-1, when the nonsingular matrix P=[Pij]∈Fn×n, i,j∈{1,2} and P11Fs×s, varies.When F is an algebraically closed field and charF≠2, we also describe the possible similarity classes of [Aij]∈Fn×n, i,j∈{1,2}, when A11 and A22 are square zero matrices and A12 and A21 vary.  相似文献   

12.
13.
We introduce the distribution function Fn(q,t) of a pair of statistics on Catalan words and conjecture Fn(q,t) equals Garsia and Haiman's q,t-Catalan sequence Cn(q,t), which they defined as a sum of rational functions. We show that Fn,s(q,t), defined as the sum of these statistics restricted to Catalan words ending in s ones, satisfies a recurrence relation. As a corollary we are able to verify that Fn(q,t)=Cn(q,t) when t=1/q. We also show the partial symmetry relation Fn(q,1)=Fn(1,q). By modifying a proof of Haiman of a q-Lagrange inversion formula based on results of Garsia and Gessel, we obtain a q-analogue of the general Lagrange inversion formula which involves Catalan words grouped according to the number of ones at the end of the word.  相似文献   

14.
Let G be a graph with n vertices and m edges and let μ(G) = μ1(G) ? ? ? μn(G) be the eigenvalues of its adjacency matrix. Set s(G)=∑uV(G)d(u)-2m/n∣. We prove that
  相似文献   

15.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

16.
We investigate relationships between polyvectors of a vector space V, alternating multilinear forms on V, hyperplanes of projective Grassmannians and regular spreads of projective spaces. Suppose V is an n-dimensional vector space over a field F and that An-1,k(F) is the Grassmannian of the (k − 1)-dimensional subspaces of PG(V) (1  ? k ? n − 1). With each hyperplane H of An-1,k(F), we associate an (n − k)-vector of V (i.e., a vector of ∧nkV) which we will call a representative vector of H. One of the problems which we consider is the isomorphism problem of hyperplanes of An-1,k(F), i.e., how isomorphism of hyperplanes can be recognized in terms of their representative vectors. Special attention is paid here to the case n = 2k and to those isomorphisms which arise from dualities of PG(V). We also prove that with each regular spread of the projective space PG(2k-1,F), there is associated some class of isomorphic hyperplanes of the Grassmannian A2k-1,k(F), and we study some properties of these hyperplanes. The above investigations allow us to obtain a new proof for the classification, up to equivalence, of the trivectors of a 6-dimensional vector space over an arbitrary field F, and to obtain a classification, up to isomorphism, of all hyperplanes of A5,3(F).  相似文献   

17.
Let V be a 6-dimensional vector space over a field F, let f be a nondegenerate alternating bilinear form on V and let Sp(V,f)≅Sp6(F) denote the symplectic group associated with (V,f). The group GL(V) has a natural action on the third exterior power ?3V of V and this action defines five families of nonzero trivectors of V (four of whose are orbits for any choice of F). In this paper, we divide three of these five families into orbits for the action of Sp(V,f)⊆GL(V) on ?3V.  相似文献   

18.
For every pair of vertices u,v in a graph, a u-v geodesic is a shortest path from u to v. For a graph G, let IG[u,v] denote the set of all vertices lying on a u-v geodesic. Let SV(G) and IG[S] denote the union of all IG[u,v] for all u,vS. A subset SV(G) is a convex set of G if IG[S]=S. A convex hull [S]G of S is a minimum convex set containing S. A subset S of V(G) is a hull set of G if [S]G=V(G). The hull number h(G) of a graph G is the minimum cardinality of a hull set in G. A subset S of V(G) is a geodetic set if IG[S]=V(G). The geodetic number g(G) of a graph G is the minimum cardinality of a geodetic set in G. A subset FV(G) is called a forcing hull (or geodetic) subset of G if there exists a unique minimum hull (or geodetic) set containing F. The cardinality of a minimum forcing hull subset in G is called the forcing hull number fh(G) of G and the cardinality of a minimum forcing geodetic subset in G is called the forcing geodetic number fg(G) of G. In the paper, we construct some 2-connected graph G with (fh(G),fg(G))=(0,0),(1,0), or (0,1), and prove that, for any nonnegative integers a, b, and c with a+b≥2, there exists a 2-connected graph G with (fh(G),fg(G),h(G),g(G))=(a,b,a+b+c,a+2b+c) or (a,2a+b,a+b+c,2a+2b+c). These results confirm a conjecture of Chartrand and Zhang proposed in [G. Chartrand, P. Zhang, The forcing hull number of a graph, J. Combin. Math. Combin. Comput. 36 (2001) 81-94].  相似文献   

19.
《Discrete Applied Mathematics》2002,116(1-2):115-126
For vertices u and v in an oriented graph D, the closed interval I[u,v] consists of u and v together with all vertices lying in a uv geodesic or vu geodesic in D. For SV(D), I[S] is the union of all closed intervals I[u,v] with u,vS. A set S is convex if I[S]=S. The convexity number con(D) is the maximum cardinality of a proper convex set of V(D). The nontrivial connected oriented graphs of order n with convexity number n−1 are characterized. It is shown that there is no connected oriented graph of order at least 4 with convexity number 2 and that every pair k, n of integers with 1⩽kn−1 and k≠2 is realizable as the convexity number and order, respectively, of some connected oriented graph. For a nontrivial connected graph G, the lower orientable convexity number con(G) is the minimum convexity number among all orientations of G and the upper orientable convexity number con+(G) is the maximum such convexity number. It is shown that con+(G)=n−1 for every graph G of order n⩾2. The lower orientable convexity numbers of some well-known graphs are determined, with special attention given to outerplanar graphs.  相似文献   

20.
Let F be a field with ∣F∣ > 2 and Tn(F) be the set of all n × n upper triangular matrices, where n ? 2. Let k ? 2 be a given integer. A k-tuple of matrices A1, …, Ak ∈ Tn(F) is called rank reverse permutable if rank(A1 A2 ? Ak) = rank(Ak Ak−1 ? A1). We characterize the linear maps on Tn(F) that strongly preserve the set of rank reverse permutable matrix k-tuples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号