首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Given any Kodaira curve C in a complex surface X, we construct a simply-laced affine Lie algebra bundle \(\mathcal {E}\) over X. When \( p _{g}(X)=0\), we construct deformations of holomorphic structures on \(\mathcal {E}\) such that the new bundle is trivial over any ADE curve \( C^{\prime }\) inside C and therefore descends to the singular surface obtained by contracting \(C^{\prime }\).  相似文献   

2.
In the context of continuous logic, this paper axiomatizes both the class \(\mathcal {C}\) of lattice-ordered groups isomorphic to C(X) for X compact and the subclass \(\mathcal {C}^+\) of structures existentially closed in \(\mathcal {C}\); shows that the theory of \(\mathcal {C}^+\) is \(\aleph _0\)-categorical and admits elimination of quantifiers; establishes a Nullstellensatz for \(\mathcal {C}\) and \(\mathcal {C}^+\); shows that \(C(X)\in \mathcal {C}\) has a prime-model extension in \(\mathcal {C}^+\) just in case X is Boolean; and proves that in a sense relevant to continuous logic, positive formulas admit in \(\mathcal {C}^+\) elimination of quantifiers to positive formulas.  相似文献   

3.
Let H be a real algebraic group acting equivariantly with finitely many orbits on a real algebraic manifold X and a real algebraic bundle \({\mathcal {E}}\) on X. Let \(\mathfrak {h}\) be the Lie algebra of H. Let \(\mathcal {S}(X,{\mathcal {E}})\) be the space of Schwartz sections of \({\mathcal {E}}\). We prove that \(\mathfrak {h}\mathcal {S}(X,{\mathcal {E}})\) is a closed subspace of \(\mathcal {S}(X,{\mathcal {E}})\) of finite codimension. We give an application of this result in the case when H is a real spherical subgroup of a real reductive group G. We deduce an equivalence of two old conjectures due to Casselman: the automatic continuity and the comparison conjecture for zero homology. Namely, let \(\pi \) be a Casselman–Wallach representation of G and V be the corresponding Harish–Chandra module. Then the natural morphism of coinvariants \(V_{\mathfrak {h}}\rightarrow \pi _{\mathfrak {h}}\) is an isomorphism if and only if any linear \(\mathfrak {h}\)-invariant functional on V is continuous in the topology induced from \(\pi \). The latter statement is known to hold in two important special cases: if H includes a symmetric subgroup, and if H includes the nilradical of a minimal parabolic subgroup of G.  相似文献   

4.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

5.
We introduce a new generalization of Alan Day’s doubling construction. For ordered sets \(\mathcal {L}\) and \(\mathcal {K}\) and a subset \(E \subseteq \ \leq _{\mathcal {L}}\) we define the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) arising from inflation of \(\mathcal {L}\) along E by \(\mathcal {K}\). Under the restriction that \(\mathcal {L}\) and \(\mathcal {K}\) are finite lattices, we find those subsets \(E \subseteq \ \leq _{\mathcal {L}}\) such that the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) is a lattice. Finite lattices that can be constructed in this way are classified in terms of their congruence lattices.A finite lattice is binary cut-through codable if and only if there exists a 0?1 spanning chain \(\left \{\theta _{i}\colon 0 \leq i \leq n \right \}\) in \(Con(\mathcal {L})\) such that the cardinality of the largest block of ?? i /?? i?1 is 2 for every i with 1≤in. These are exactly the lattices that can be constructed by inflation from the 1-element lattice using only the 2-element lattice. We investigate the structure of binary cut-through codable lattices and describe an infinite class of lattices that generate binary cut-through codable varieties.  相似文献   

6.
For the extended Dirichlet space \(\mathcal {F}_{e}\) of a general irreducible recurrent regular Dirichlet form \((\mathcal {E},\mathcal {F})\) on L 2(E;m), we consider the family \(\mathbb {G}(\mathcal {E})=\{X_{u};u\in \mathcal {F}_{e}\}\) of centered Gaussian random variables defined on a probability space \(({\Omega }, \mathcal {B}, \mathbb {P})\) indexed by the elements of \(\mathcal {F}_{e}\) and possessing the Dirichlet form \(\mathcal {E}\) as its covariance. We formulate the Markov property of the Gaussian field \(\mathbb {G}(\mathcal {E})\) by associating with each set A ? E the sub-σ-field σ(A) of \(\mathcal {B}\) generated by X u for every \(u\in \mathcal {F}_{e}\) whose spectrum s(u) is contained in A. Under a mild absolute continuity condition on the transition function of the Hunt process associated with \((\mathcal {E}, \mathcal {F})\), we prove the equivalence of the Markov property of \(\mathbb {G}(\mathcal {E})\) and the local property of \((\mathcal {E},\mathcal {F})\). One of the key ingredients in the proof is in that we construct potentials of finite signed measures of zero total mass and show that, for any Borel set B with m(B) >?0, any function \(u\in \mathcal {F}_{e}\) with s(u) ? B can be approximated by a sequence of potentials of measures supported by B.  相似文献   

7.
The congruence lattices of all algebras defined on a fixed finite set A ordered by inclusion form a finite atomistic lattice \(\mathcal {E}\). We describe the atoms and coatoms. Each meet-irreducible element of \(\mathcal {E}\) being determined by a single unary mapping on A, we characterize completely those which are determined by a permutation or by an acyclic mapping on the set A. Using these characterisations we deduce several properties of the lattice \(\mathcal {E}\); in particular, we prove that \(\mathcal {E}\) is tolerance-simple whenever \(|A|\ge 4\).  相似文献   

8.
Let X be a smooth complex projective variety of dimension n and \(\mathcal {L}\) an ample line bundle on it. There is a well known bijective correspondence between the isomorphism classes of polystable vector bundles E on X with \(c_{1}(E) = 0 = c_{2} (E) \cdot c_{1} (\mathcal {L})^{n-2}\) and the equivalence classes of unitary representations of π1(X). We show that this bijective correspondence extends to smooth orbifolds.  相似文献   

9.
Friedrich Wehrung 《Order》2018,35(1):111-132
A partial lattice P is ideal-projective, with respect to a class \(\mathcal {C}\) of lattices, if for every \(K\in \mathcal {C}\) and every homomorphism φ of partial lattices from P to the ideal lattice of K, there are arbitrarily large choice functions f:PK for φ that are also homomorphisms of partial lattices. This extends the traditional concept of (sharp) transferability of a lattice with respect to \(\mathcal {C}\). We prove the following: (1) A finite lattice P, belonging to a variety \(\mathcal {V}\), is sharply transferable with respect to \(\mathcal {V}\) iff it is projective with respect to \(\mathcal {V}\) and weakly distributive lattice homomorphisms, iff it is ideal-projective with respect to \(\mathcal {V}\), (2) Every finite distributive lattice is sharply transferable with respect to the class \(\mathcal {R}_{\text {mod}}\) of all relatively complemented modular lattices, (3) The gluing D 4 of two squares, the top of one being identified with the bottom of the other one, is sharply transferable with respect to a variety \(\mathcal {V}\) iff \(\mathcal {V}\) is contained in the variety \(\mathcal {M}_{\omega }\) generated by all lattices of length 2, (4) D 4 is projective, but not ideal-projective, with respect to \(\mathcal {R}_{\text {mod}}\) , (5) D 4 is transferable, but not sharply transferable, with respect to the variety \(\mathcal {M}\) of all modular lattices. This solves a 1978 problem of G. Grätzer, (6) We construct a modular lattice whose canonical embedding into its ideal lattice is not pure. This solves a 1974 problem of E. Nelson.  相似文献   

10.
Let \(H^{2}_{m}\) be the Drury–Arveson (DA) module which is the reproducing kernel Hilbert space with the kernel function \((z, w) \in\mathbb{B}^{m} \times\mathbb{B}^{m} \rightarrow (1 - \sum_{i=1}^{m}z_{i} \bar{w}_{i})^{-1}\). We investigate for which multipliers \(\theta: \mathbb{B}^{m} \rightarrow \mathcal{L}(\mathcal{E}, \mathcal {E}_{*})\) with ran?M θ closed, the quotient module \(\mathcal{H}_{\theta}\), given by
$\cdots\longrightarrow H^2_m \otimes\mathcal{E} \stackrel{M_{\theta }}{\longrightarrow}H^2_m \otimes\mathcal{E}_* \stackrel{\pi_{\theta}}{\longrightarrow}\mathcal{H}_{\theta}\longrightarrow0,$
is similar to \(H^{2}_{m} \otimes \mathcal {F}\) for some Hilbert space \(\mathcal{F}\). Here M θ is the corresponding multiplication operator in \(\mathcal{L}(H^{2}_{m} \otimes\mathcal{E}, H^{2}_{m} \otimes\mathcal{E}_{*})\) for Hilbert spaces \(\mathcal{E}\) and \(\mathcal{E}_{*}\) and \(\mathcal {H}_{\theta}\) is the quotient module \((H^{2}_{m} \otimes\mathcal{E}_{*})/ M_{\theta}(H^{2}_{m} \otimes\mathcal{E})\), and π θ is the quotient map. We show that a necessary condition is the existence of a multiplier ψ in \(\mathcal{M}(\mathcal{E}_{*}, \mathcal{E})\) such that
$\theta\psi\theta= \theta.$
Moreover, we show that the converse is equivalent to a structure theorem for complemented submodules of \(H^{2}_{m} \otimes\mathcal{E}\) for a Hilbert space \(\mathcal {E}\), which is valid for the case of m=1. The latter result generalizes a known theorem on similarity to the unilateral shift, but the above statement is new. Further, we show that a finite resolution of DA-modules of arbitrary multiplicity using partially isometric module maps must be trivial. Finally, we discuss the analogous questions when the underlying operator m-tuple (or algebra) is not necessarily commuting (or commutative). In this case the converse to the similarity result is always valid.
  相似文献   

11.
Let k be a commutative ring, \(\mathcal {A}\) and \(\mathcal {B}\) – two k-linear categories with an action of a group G. We introduce the notion of a standard G-equivalence from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\), where \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) is the homotopy category of finitely generated projective \(\mathcal {A}\)-complexes. We construct a map from the set of standard G-equivalences to the set of standard equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) and a map from the set of standard G-equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) to the set of standard equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}(\mathcal {B}/G)\) to \(\mathcal {K}_{p}^{\mathrm {b}}(\mathcal {A}/G)\), where \(\mathcal {A}/G\) denotes the orbit category. We investigate the properties of these maps and apply our results to the case where \(\mathcal {A}=\mathcal {B}=R\) is a Frobenius k-algebra and G is the cyclic group generated by its Nakayama automorphism ν. We apply this technique to obtain the generating set of the derived Picard group of a Frobenius Nakayama algebra over an algebraically closed field.  相似文献   

12.
We construct two new G-equivariant rings: \(\mathcal{K}(X,G)\), called the stringy K-theory of the G-variety X, and \(\mathcal{H}(X,G)\), called the stringy cohomology of the G-variety X, for any smooth, projective variety X with an action of a finite group G. For a smooth Deligne–Mumford stack \(\mathcal{X}\), we also construct a new ring \(\mathsf{K}_{\mathrm{orb}}(\mathcal{X})\) called the full orbifold K-theory of \(\mathcal{X}\). We show that for a global quotient \(\mathcal{X} = [X/G]\), the ring of G-invariants \(K_{\mathrm{orb}}(\mathcal{X})\) of \(\mathcal{K}(X,G)\) is a subalgebra of \(\mathsf{K}_{\mathrm{orb}}([X/G])\) and is linearly isomorphic to the “orbifold K-theory” of Adem-Ruan [AR] (and hence Atiyah-Segal), but carries a different “quantum” product which respects the natural group grading.We prove that there is a ring isomorphism \(\mathcal{C}\mathbf{h}:\mathcal{K}(X,G)\to\mathcal{H}(X,G)\), which we call the stringy Chern character. We also show that there is a ring homomorphism \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}:\mathsf{K}_{\mathrm{orb}}(\mathcal{X}) \rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\), which we call the orbifold Chern character, which induces an isomorphism \(Ch_{\mathrm{orb}}:K_{\mathrm{orb}}(\mathcal{X})\rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\) when restricted to the sub-algebra \(K_{\mathrm{orb}}(\mathcal{X})\). Here \(H_{\mathrm{orb}}^\bullet(\mathcal{X})\) is the Chen–Ruan orbifold cohomology. We further show that \(\mathcal{C}\mathbf{h}\) and \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}\) preserve many properties of these algebras and satisfy the Grothendieck–Riemann–Roch theorem with respect to étale maps. All of these results hold both in the algebro-geometric category and in the topological category for equivariant almost complex manifolds.We further prove that \(\mathcal{H}(X,G)\) is isomorphic to Fantechi and Göttsche’s construction [FG, JKK]. Since our constructions do not use complex curves, stable maps, admissible covers, or moduli spaces, our results greatly simplify the definitions of the Fantechi–Göttsche ring, Chen–Ruan orbifold cohomology, and the Abramovich–Graber–Vistoli orbifold Chow ring.We conclude by showing that a K-theoretic version of Ruan’s Hyper-Kähler Resolution Conjecture holds for the symmetric product of a complex projective surface with trivial first Chern class.  相似文献   

13.
This work is entirely devoted to construct huge families of indecomposable arithmetically Cohen-Macaulay (resp. Ulrich) sheaves \(\mathcal {E}\) of arbitrary high rank on a general standard (resp. linear) determinantal scheme \(X\subset \mathbb {P}^{n}\) of codimension c ≥ 1, n ? c ≥ 1 and defined by the maximal minors of a t × (t + c?1) homogeneous matrix \(\mathcal {A}\). The sheaves \(\mathcal {E}\) are constructed as iterated extensions of sheaves of lower rank. As applications: (1) we prove that any general standard determinantal scheme \(X\subset \mathbb {P}^{n}\) is of wild representation type provided the degrees of the entries of the matrix \(\mathcal {A}\) satisfy some weak numerical assumptions; and (2) we determine values of t, n and n ? c for which a linear standard determinantal scheme \(X\subset \mathbb {P}^{n}\) is of wild representation type with respect to the much more restrictive category of its indecomposable Ulrich sheaves, i.e. X is of Ulrich wild representation type.  相似文献   

14.
Let \(\mathcal{U}\) be the class of all unipotent monoids and \(\mathcal{B}\) the variety of all bands. We characterize the Malcev product \(\mathcal{U} \circ \mathcal{V}\) where \(\mathcal{V}\) is a subvariety of \(\mathcal{B}\) low in its lattice of subvarieties, \(\mathcal{B}\) itself and the subquasivariety \(\mathcal{S} \circ \mathcal{RB}\), where \(\mathcal{S}\) stands for semilattices and \(\mathcal{RB}\) for rectangular bands, in several ways including by a set of axioms. For members of some of them we describe the structure as well. This succeeds by using the relation \(\widetilde{\mathcal{H}}= \widetilde{\mathcal{L}} \cap \widetilde{\mathcal{R}}\), where \(a\;\,\widetilde{\mathcal{L}}\;\,b\) if and only if a and b have the same idempotent right identities, and \(\widetilde{\mathcal{R}}\) is its dual.We also consider \((\mathcal{U} \circ \mathcal{RB}) \circ \mathcal{S}\) which provides the motivation for this study since \((\mathcal{G} \circ \mathcal{RB}) \circ \mathcal{S}\) coincides with completely regular semigroups, where \(\mathcal{G}\) is the variety of all groups. All this amounts to a generalization of the latter: \(\mathcal{U}\) instead of \(\mathcal{G}\).  相似文献   

15.
If (M,?) is a manifold with a symmetric linear connection, then T*M can be endowed with the natural Riemann extension \(\bar g\) (O. Kowalski and M. Sekizawa (2011), M. Sekizawa (1987)). Here we continue to study the harmonicity with respect to \(\bar g\) initiated by C. L.Bejan and O.Kowalski (2015). More precisely, we first construct a canonical almost para-complex structure \(\mathcal{P}\) on (T*M, \(\bar g\)) and prove that \(\mathcal{P}\) is harmonic (in the sense of E.Garciá-Río, L.Vanhecke and M. E.Vázquez-Abal (1997)) if and only if \(\bar g\) reduces to the classical Riemann extension introduced by E.M. Patterson and A.G. Walker (1952).  相似文献   

16.
Let \(\mathcal {A}\subset \left( {\begin{array}{c}[n]\\ r\end{array}}\right) \) be a compressed, intersecting family and let \(X\subset [n]\). Let \(\mathcal {A}(X)=\{A\in \mathcal {A}:A\cap X\ne \emptyset \}\) and \(\mathcal {S}_{n,r}=\left( {\begin{array}{c}[n]\\ r\end{array}}\right) (\{1\})\). Motivated by the Erd?s–Ko–Rado theorem, Borg asked for which \(X\subset [2,n]\) do we have \(|\mathcal {A}(X)|\le |\mathcal {S}_{n,r}(X)|\) for all compressed, intersecting families \(\mathcal {A}\)? We call X that satisfy this property EKR. Borg classified EKR sets X such that \(|X|\ge r\). Barber classified X, with \(|X|\le r\), such that X is EKR for sufficiently large n, and asked how large n must be. We prove n is sufficiently large when n grows quadratically in r. In the case where \(\mathcal {A}\) has a maximal element, we sharpen this bound to \(n>\varphi ^{2}r\) implies \(|\mathcal {A}(X)|\le |\mathcal {S}_{n,r}(X)|\). We conclude by giving a generating function that speeds up computation of \(|\mathcal {A}(X)|\) in comparison with the naïve methods.  相似文献   

17.
Fix sets X and Y, and write \(\mathcal P\mathcal T_{XY}\) for the set of all partial functions \(X\rightarrow Y\). Fix a partial function \({a:Y\rightarrow X}\), and define the operation \(\star _a\) on \(\mathcal P\mathcal T_{XY}\) by \(f\star _ag=fag\) for \(f,g\in \mathcal P\mathcal T_{XY}\). The sandwich semigroup \((\mathcal P\mathcal T_{XY},\star _a)\) is denoted \(\mathcal P\mathcal T_{XY}^a\). We apply general results from Part I to thoroughly describe the structural and combinatorial properties of \(\mathcal P\mathcal T_{XY}^a\), as well as its regular and idempotent-generated subsemigroups, \({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) and \(\mathbb E(\mathcal P\mathcal T_{XY}^a)\). After describing regularity, stability and Green’s relations and preorders, we exhibit \({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) as a pullback product of certain regular subsemigroups of the (non-sandwich) partial transformation semigroups \(\mathcal P\mathcal T_X\) and \(\mathcal P\mathcal T_Y\), and as a kind of “inflation” of \(\mathcal P\mathcal T_A\), where A is the image of the sandwich element a. We also calculate the rank (minimal size of a generating set) and, where appropriate, the idempotent rank (minimal size of an idempotent generating set) of \(\mathcal P\mathcal T_{XY}^a\)\({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) and \(\mathbb E(\mathcal P\mathcal T_{XY}^a)\). The same program is also carried out for sandwich semigroups of totally defined functions and for injective partial functions. Several corollaries are obtained for various (non-sandwich) semigroups of (partial) transformations with restricted image, domain and/or kernel.  相似文献   

18.
Let \(\mathcal{T}\) be a one-parameter semigroup of nonexpansive mappings on a nonempty closed convex subset C of a strictly convex and reflexive Banach space X. Suppose additionally that X has a uniformly Gâteaux differentiable norm, C has normal structure, and \(\mathcal{T}\) has a common fixed point. Then it is proved that, under appropriate conditions on nonexpansive semigroups and iterative parameters, the approximate solutions obtained by the implicit and explicit viscosity iterative processes converge strongly to the same common fixed point of \(\mathcal{T}\), which is a solution of a certain variational inequality.  相似文献   

19.
Let \(G={\mathcal{A}ut(\mathcal{T})}\) be the group of all automorphisms of a homogeneous tree \(\mathcal{T}\) of degree q?+?1?≥?3 and (X, m) a compact metrizable measure space with a probability measure m. We assume that μ has no atoms. The group \(\mathcal{G}={\mathcal{A}ut(\mathcal{T})}^X=G^X\) of bounded measurable currents is the completion of the group of step functions \(f:X\to{\mathcal{A}ut(\mathcal{T})}\) with respect to a suitable metric. Continuos functions form a dense subgroup of \(\mathcal{G}\). Following the ideas of I.M. Gelfand, M.I. Graev and A.M. Vershik we shall construct an irreducible family of representations of \(\mathcal{G}\). The existence of such representations depends deeply from the nonvanisching of the first cohomology group \(H^1({\mathcal{A}ut(\mathcal{T})},\pi)\) for a suitable infinite dimensional π.  相似文献   

20.
Each saturated (resp., Arf) numerical semigroup S has the property that each of its fractions \(\frac{S}{k}\) is saturated (resp., Arf), but the property of being of maximal embedding dimension (MED) is not stable under formation of fractions. If S is a numerical semigroup, then S is MED (resp., Arf; resp., saturated) if and only if, for each 2≤k∈?, \(S = \frac{T}{k}\) for infinitely many MED (resp., Arf; resp., saturated) numerical semigroups T. Let \(\mathcal{A}\) (resp., \(\mathcal{F}\)) be the class of Arf numerical semigroups (resp., of numerical semigroups each of whose fractions is of maximal embedding dimension). Then there exists an infinite strictly ascending chain \(\mathcal{A} =\mathcal{C}_{1} \subset\mathcal{C}_{2} \subset\mathcal{C}_{3}\subset \,\cdots\, \subset\mathcal{F}\), where, like \(\mathcal{A}\) and \(\mathcal{F}\), each \(\mathcal{C}_{n}\) is stable under the formation of fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号