首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiol‐containing amino acids (aminothiols) such as cysteine (Cys) and homocysteine (Hcy) play a key role in various biological processes including maintaining the homeostasis of biological thiols. However, abnormal levels of aminothiols are associated with a variety of diseases. The native chemical ligation (NCL) reaction has attracted great attention in the fields of chemistry and biology. NCL of peptide segments involves cascade reactions between a peptide‐α‐thioester and an N‐terminal cysteine peptide. In this work, we employed the NCL reaction mechanism to formulate a Förster resonance energy transfer (FRET) strategy for the design of ratiometric fluorescent probes that were selective toward aminothiols. On the basis of this new strategy, the ratiometric fluorescent probe 1 for aminothiols was judiciously designed. The new probe is highly selective toward aminothiols over other thiols and exhibits a very large variation (up to 160‐fold) in its fluorescence ratio (I458/I603). The new fluorescent probe is capable of ratiometric detection of aminothiols in newborn calf and human serum samples and is also suitable for ratiometric fluorescent imaging of aminothiols in living cells.  相似文献   

2.
ADMET (absorption, distribution, metabolism, excretion, and toxicity)‐related failure of drug candidates is a major issue for the pharmaceutical industry today. Prediction of PD‐PK‐T properties using in silico tools has become very important in pharmaceutical research to reduce cost and enhance efficiency. PaDEL‐DDPredictor is an in silico tool for rapid prediction of PD‐PK‐T properties of compounds from their chemical structures. It is free and open‐source software that, has both graphical user interface and command line interface, can work on all major platforms (Windows, Linux, and MacOS) and supports more than 90 different molecular file formats. The software can be downloaded from http://padel.nus.edu.sg/software/padelddpredictor . © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Multifunctional stimuli‐responsive nanotheranostic systems are highly desirable for realizing simultaneous biomedical imaging and on‐demand therapy with minimized adverse effects. Herein, we present the construction of an intelligent X‐ray‐controlled NO‐releasing upconversion nanotheranostic system (termed as PEG‐USMSs‐SNO) by engineering UCNPs with S‐nitrosothiol (R‐SNO)‐grafted mesoporous silica. The PEG‐USMSs‐SNO is designed to respond sensitively to X‐ray radiation for breaking down the S N bond of SNO to release NO, which leads to X‐ray dose‐controlled NO release for on‐demand hypoxic radiosensitization besides upconversion luminescent imaging through UCNPs in vitro and in vivo. Thanks to the high live‐body permeability of X‐ray, our developed PEG‐USMSs‐SNO may provide a new technique for achieving depth‐independent controlled NO release and positioned radiotherapy enhancement against deep‐seated solid tumors.  相似文献   

4.
5.
Human 15‐lipoxygenase‐1 (15‐LOX‐1) plays an important role in several inflammatory lung diseases, such as asthma, COPD, and chronic bronchitis, as well as various CNS diseases, such as Alzheimer's disease, Parkinson's disease, and stroke. Activity‐based probes of 15‐LOX‐1 are required to explore the role of this enzyme further and to enable drug discovery. In this study, we developed a 15‐LOX‐1 activity‐based probe for the efficient activity‐based labeling of recombinant 15‐LOX‐1. 15‐LOX‐1‐dependent labeling in cell lysates and tissue samples was also possible. To mimic the natural substrate of the enzyme, we designed activity‐based probes that covalently bind to the active enzyme and include a terminal alkene as a chemical reporter for the bioorthogonal linkage of a detectable functionality through an oxidative Heck reaction. The activity‐based labeling of 15‐LOX‐1 should enable the investigation and identification of this enzyme in complex biological samples, thus opening up completely new opportunities for drug discovery.  相似文献   

6.
7.
A novel cross‐linkable electron‐transport material has been designed and synthesized for use in the fabrication of solution‐processed OLEDs. The material exhibits a low LUMO level of ?3.51 eV, a high electron mobility of 1.5×10?5 cm2 V?1 s?1, and excellent stability. An average 9.3 % shrinkage in film thickness was observed for the film after thermal curing. A maximum external quantum efficiency (EQE) of 15.6 % (35.0 cd A?1) was achieved for blue‐phosphorescent OLEDs by spin‐coating and 13.8 % (31.0 cd A?1) for an ink‐jet‐printed device, both of which are better than the EQE of a control device prepared by vacuum‐deposition (see figure).  相似文献   

8.
A barrier film is a fundamental component of the fast growing organic electronic device industry that is necessary to sustain long‐term stability. The barrier film prevents the permeation of environmental moisture and oxygen into the organic electronic device. Superior barrier property is the most crucial characteristic of a barrier film, in addition to a high refractive index. A high‐refractive‐index barrier film has the potential to reduce the refractive‐index mismatch between a device and a protective film, consequently, reducing the energy costs by increasing the light output. In this work, six epoxy and phenoxy resin composite compositions are synthesized separately, each with a different cross‐linker. POL‐TE1/PET and POL‐HD1/PET films show enhanced refractive indexes of 1.726 (at 750 nm) and 1.721 (at 500 nm), allowing only 71.7% and 70.4% permeation, respectively, compared to those of POL/PET, while exhibiting more than 80% transparency and excellent properties. The films are fabricated using a straightforward process, from a solution, at low temperature and under atmospheric conditions, using an applicator and bar coating.  相似文献   

9.
The deployment of high‐energy‐density lithium‐metal batteries has been greatly impeded by Li dendrite growth and safety concerns originating from flammable liquid electrolytes. Herein, we report a stable quasi‐solid‐state Li metal battery with a deep eutectic solvent (DES)‐based self‐healing polymer (DSP) electrolyte. This electrolyte was fabricated in a facile manner by in situ copolymerization of 2‐(3‐(6‐methyl‐4‐oxo‐1,4‐dihydropyrimidin‐2‐yl)ureido)ethyl methacrylate (UPyMA) and pentaerythritol tetraacrylate (PETEA) monomers in a DES‐based electrolyte containing fluoroethylene carbonate (FEC) as an additive. The well‐designed DSP electrolyte simultaneously possesses non‐flammability, high ionic conductivity and electrochemical stability, and dendrite‐free Li plating. When applied in Li metal batteries with a LiMn2O4 cathode, the DSP electrolyte effectively suppressed manganese dissolution from the cathode and enabled high‐capacity and a long lifespan at room and elevated temperatures.  相似文献   

10.
11.
Mitochondrial membrane potential is more negative in cancer cells than in normal cells, allowing cancer targeting by delocalized lipophilic cations (DLCs). However, as the difference is rather small, these drugs affect also normal cells. Now a concept of pro‐DLCs is proposed based on an N‐alkylaminoferrocene structure. These prodrugs are activated by the reaction with reactive oxygen species (ROS) forming ferrocenium‐based DLCs. Since ROS are overproduced in cancer, the high‐efficiency cancer‐cell‐specific targeting of mitochondria could be achieved as demonstrated by fluorescence microscopy in combination with two fluorogenic pro‐DLCs in vitro and in vivo. We prepared a conjugate of another pro‐DLC with a clinically approved drug carboplatin and confirmed that its accumulation in mitochondria was higher than that of the free drug. This was reflected in the substantially higher anticancer effect of the conjugate.  相似文献   

12.
The synthesis, characterization, and photophysical and photovoltaic properties of two anthracene‐containing wide‐band‐gap donor and acceptor (D–A) alternating conjugated polymers ( P1 and P2 ) are described. These two polymers absorb in the range of 300–600 nm with a band gap of about 2.12 eV. Polymer solar cells with P1 :PC71BM as the active layer demonstrate a power conversion efficiency (PCE) of 2.23% with a high Voc of 0.96 V, a Jsc of 4.4 mA cm−2, and a comparable fill factor (FF) of 0.53 under simulated solar illumination of AM 1.5 G (100 mW cm−2). In addition, P2 :PC71BM blend‐based solar cells exhibit a PCE of 1.42% with a comparable Voc of 0.89 V, a Jsc of 3.0 mA cm−2, and an FF of 0.53.

  相似文献   


13.
Halogen‐bonding (XB) interactions were exploited in the solution‐phase assembly of anion‐templated pseudorotaxanes between an isophthalamide‐containing macrocycle and bromo‐ or iodo‐functionalised pyridinium threading components. 1H NMR spectroscopic titration investigations demonstrated that such XB interpenetrated assemblies are more stable than analogous hydrogen bonding (HB) pseudorotaxanes. The stability of the anion‐templated halogen‐bonded pseudorotaxane architectures was exploited in the preparation of new halogen‐bonding interlocked catenane species through a Grubbs’ ring‐closing metathesis (RCM) clipping methodology. The catenanes’ anion recognition properties in the competitive CDCl3/CD3OD 1:1 solvent mixture revealed selectivity for the heavier halides iodide and bromide over chloride and acetate.  相似文献   

14.
In this work, an LED‐induced‐chemiluminescence (LED‐CL) system was developed to extend the application of CL detection in CE. In the LED‐CL, the analyte photooxidizes luminol under the irradiation of LEDs and generates CL. Taking the advantage of the small size nature of LEDs, the constructed photoreactor is greatly miniaturized, and especially suitable as a CE detector. The feasibility of the proposed detector was evaluated by detection of riboflavin (RF), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) after CE separation. Under the optimized conditions, the LODs for RF, FMN and FAD were 0.007, 0.02 and 0.1 μg/mL, respectively, better than those by UV detection. The RSDs were 3.4, 3.6 and 4.1% for 0.5 μg/mL RF, 2 μg/mL FMN and 5 μg/mL FAD, respectively. The LED‐CL detector features low cost, miniaturization, fast response, high sensitivity and good reproducibility.  相似文献   

15.
16.
A temperature‐controlling device for in‐tube solid‐phase microextraction was developed based on thermoelectric cooling and heating. This device can control the temperature of the capillary column from 0 to 100°C by applying a voltage to a Peltier cooler or stainless steel tube. The extraction temperatures for angiotensin I, propranolol, and ranitidine were optimized. In all cases, setting the temperature to 10°C for extraction achieved the best extraction efficiency. Desorption showed minimum peak broadening at 70°C, contributing to better chromatographic performance. Propranolol was selected as a model compound to compare the performance of temperature‐controlled in‐tube solid‐phase microextraction at optimized conditions. Calibration curves exhibited good linearity (R2 > 0.999) over the studied range, and the limit of detection and limit of quantification were about three times lower than those obtained at standard conditions (30°C extraction and desorption).  相似文献   

17.
For all‐solution‐processed (ASP) devices, transparent conducting oxide (TCO) nanocrystal (NC) inks are anticipated as the next‐generation electrodes to replace both those synthesized by sputtering techniques and those consisting of rare metals, but a universal and one‐pot method to prepare these inks is still lacking. A universal one‐pot strategy is now described; through simply heating a mixture of metal–organic precursors a wide range of TCO NC inks, which can be assembled into high‐performance electrodes for use in ASP optoelectronics, were synthesized. This method can be used for various oxide NC inks with yields as high as 10 g. The formed NCs are of high crystallinity, uniform morphology, monodispersity, and high ink stability and feature effective doping. Therefore, the inks can be readily assembled into films with a surface roughness of 1.6 nm. Typically, a sheet resistance of 110 Ω sq?1 can be achieved with a transmittance of 88 %, which is the best performance for TCO NC ink‐based electrodes described to date. These electrodes can thus drive a polymer light‐emitting diode (PLED) with a luminance of 2200 cd m?2 at 100 mA cm?2.  相似文献   

18.
Ten new efficient p‐dopants for conductivity doping of organic semiconductors for OLEDs are identified. The key advantage of the electrophilic tris(carboxylato) bismuth(III) compounds is the unique low absorption of the resulting doped layers which promotes the efficiency of OLED devices. The combination of these features with their low fabrication cost, volatility, and stability, make these materials very attractive as dopants in organic electronics.  相似文献   

19.
Several pyrene‐based polyphenylene dendrimers (PYPPDs) with different peripheral chromophores (PCs) are synthesized and characterized. Deep blue emissions solely from the core are observed for all of them in photoluminescence spectra due to good steric shielding of the core and highly efficient surface‐to‐core Förster resonant energy transfers (FRETs). Device performances are found in good correlation with the energy gaps between the work function of the electrodes and the frontier molecular orbital (FMO) levels of the PCs. Pure blue emission, luminance as high as 3700 cd m−2 with Commission Internationale de l'Éclairage 1931 (CIExy) = (0.16, 0.21), and a peak current efficiency of 0.52 cd A−1 at CIExy = (0.17, 0.20) are achieved. These dendrimers are among the best dendritic systems so far for fluorescent blue light‐emitting materials.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号