首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compounds, C18H21NO and C18H21NS, in their enantiomerically pure forms are isostructural with the enantiomerically pure 4‐(4‐hydroxyphenyl)‐2,2,4‐trimethylchroman and 4‐(2,4‐dihydroxyphenyl)‐2,2,4‐trimethylchroman analogues and form extended linear chains via N—H...O or N—H...S hydrogen bonding along the [100] direction. The absolute configuration for both compounds was determined by anomalous dispersion methods with reference to both the Flack parameter and, for the light‐atom compound, Bayesian statistics on Bijvoet differences.  相似文献   

2.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

3.
4.
The title compound, C20H18ClNOS2, is a thia­zole‐derived thio­hydroxamic acid O‐ester. The value of Z′ is 3 and the asymmetric unit comprises three mol­ecules of identical helicity along the N—O bond. Two of these show an anti and the third a syn arrangement of substituents attached in positions 3 and 4 to the 1,3‐thia­zole nucleus.  相似文献   

5.
In the title compound, C18H13N5, the two pyridyl rings form dihedral angles of 32.7 (2) and 30.1 (2)° with the triazole ring. The most favoured orientation of the pyridyl rings is that with their N atoms on opposite sides of the triazole ring directed towards the phenyl ring. π–π‐Stacking interactions involving pyridyl rings are observed along the a axis at a perpendicular distance of 3.670 (3) Å. This arrangement is further stabilized by weak intermolecular C—H?N hydrogen bonds.  相似文献   

6.
The title enanti­omorphic compounds, C16H23NO4S, have been obtained in an enanti­omerically pure form by crystallization from a diastereomeric mixture either of (2S,4S)‐ and (2R,4S)‐ or of (2R,4R)‐ and (2S,4R)‐2‐tert‐butyl‐4‐methyl‐3‐(4‐tolyl­sulfon­yl)‐1,3‐oxazolidine‐4‐carbaldehyde. These mixtures were prepared by an aziridination rearrangement process starting with (S)‐ or (R)‐2‐tert‐butyl‐5‐methyl‐4H‐1,3‐dioxine. The crystal structures indicate an envelope conformation of the oxazolidine moiety for both compounds.  相似文献   

7.
8.
The title structures, both C10H10N4O, are substitutional isomers. The N—N bond lengths are longer and the C=N bond lengths are shorter by ca 0.025 Å than the respective average values in the C=N—N=C group of asymmetric triazines; the assessed respective bond orders are 1.3 and 1.7. There are N—H⋯O and N—H⋯N hydrogen bonds in both structures, with 4‐­amino‐3‐methyl‐6‐phenyl‐1,2,4‐triazin‐5(4H)‐one containing a rare bifurcated N—H⋯N,N hydrogen bond. The structures differ in their mol­ecular stacking and the hydrogen‐bonding patterns.  相似文献   

9.
The 4‐chloro‐ [C14H11ClN2O2, (I)], 4‐bromo‐ [C14H10BrN2O2, (II)] and 4‐diethylamino‐ [C18H21N3O2, (III)] derivatives of benzylidene‐4‐hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond is E. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two‐dimensional slab‐like networks extending in the a and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐tail viaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two‐dimensional networks extending in the b and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐head viaπ–π interactions involving inversion‐related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].  相似文献   

10.
Syntheses and X‐ray structural investigations have been carried out for (E)‐(4‐hydroxy­phenyl)(4‐nitro­phenyl)­diazene, C12H9N3O3, (Ia), (E)‐(4‐methoxy­phenyl)(4‐nitro­phenyl)­diazene, C13H11N3O3, (IIIa), and (E)‐[4‐(6‐bromo­hexyl­oxy)­phenyl](4‐cyano­phenyl)­diazene, C19H20BrN3O, (IIIc). In all of these compounds, the mol­ecules are almost planar and the azo­benzene core has a trans geometry. Compound (Ia) contains four and compound (IIIc) contains two independent mol­ecules in the asymmetric unit, both in space group P (No. 2). In compound (Ia), the independent mol­ecules are almost identical, whereas in crystal (IIIc), the two independent mol­ecules differ significantly due to different conformations of the alkyl tails. In the crystals of (Ia) and (IIIa), the mol­ecules are arranged in almost planar sheets. In the crystal of (IIIc), the mol­ecules are packed with a marked separation of the azo­benzene cores and alkyl tails, which is common for the solid crystalline precursors of mesogens.  相似文献   

11.
Synthesis of several 4‐benzhydrylidenepiperidine analogs has been established starting from different (4‐phenylpiperidin‐4‐yl)‐arylmethanols via boron trifluoride etherate mediated rearrangement. The possible rearranged mechanism was proposed. Boron trifluoride etherate‐mediated rearrangement of the related derivatives was also examined. It presents a novel rearrangement reaction catalyzed by boron trifluoride etherate and broadens the scope of application.  相似文献   

12.
The title compound, 1,1,2,2‐tetra­carbonyl‐1,2‐μ‐carbonyl‐4,11‐di­methyl­sulfido‐closo‐1,2‐dicobaltadodecaborane, [Co2(C4H20B10S2)(CO)5], has a closo 12‐vertex {1,2‐Co2B10H8} structure with SMe2 ligands at the exo‐4‐ and 11‐positions. The cluster displays close structural similarities to the SEt2 analogue.  相似文献   

13.
In the title compound 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐piperidone, C22H23NO3, (I), the central heterocyclic ring adopts a flattened boat conformation, while in the related salt 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐oxopiperidin­ium chloride, C22H24NO3+·Cl, (II), the ring exhibits a `sofa' conformation in which the N atom deviates from the planar fragment. The pendant benzene rings are twisted from the heterocyclic ring planes in both mol­ecules in the same direction, the range of dihedral angles between the ring planes being 24.5 (2)–32.7 (2)°. The dominant packing motif in (I) involves centrosymmetric dimers bound by weak intermolecular C—H⋯O hydrogen bonds. In (II), cations and anions are linked by strong N—H⋯Cl hydrogen bonds, while weak C—H⋯O and C—H⋯Cl hydrogen bonds link the cations and anions into a three‐dimensional framework.  相似文献   

14.
Three polymorphs of 4,4′‐diiodobenzalazine (systematic name: 4‐iodobenzaldehyde azine), C14H10I2N2, have crystallographically imposed inversion symmetry. 4‐Chloro‐4′‐iodobenzalazine [systematic name: 1‐(4‐chlorobenzylidene)‐2‐(4‐iodobenzylidene)diazane], C14H10ClIN2, has a partially disordered pseudocentrosymmetric packing and is not isostructural with any of the polymorphs of 4,4′‐diiodobenzalazine. All structures pack utilizing halogen–halogen interactions; some also have weak π (benzene ring) interactions. A comparison with previously published methylphenylketalazines (which differ by substitution of methyl for H at the azine C atoms) shows a fundamentally different geometry for these two classes, namely planar for the alazines and twisted for the ketalazines. Density functional theory calculations confirm that the difference is fundamental and not an artifact of packing forces.  相似文献   

15.
The crystal structures of the title compounds, C17H15BrN2O2, (I), and C18H18N2O2, (II), determined at room temperature, have a trans configuration with respect to the diazene linkage, as found for other azo (diazene) derivatives. The aromatic mean planes are nearly coplanar, with a dihedral angle between these planes of 8.31 (2)° for (I) and 3.74 (2)° for (II). In both complexes, the mean plane of the ester group is nearly perpendicular to the aromatic ring planes. In both compounds, the crystal packing involves only π–π and π–ring inter­actions, which combine to stabilize the extended structure.  相似文献   

16.
The title compounds, C8H10O2, (I), and C12H14O2, (II), occurred as by‐products in the controlled synthesis of a series of bis­(gem‐alkynols), prepared as part of an extensive study of synthon formation in simple gem‐alkynol derivatives. The two 4‐(gem‐alkynol)‐1‐ones crystallize in space group P21/c, (I) with Z′ = 1 and (II) with Z′ = 2. Both structures are dominated by O—H?O=C hydrogen bonds, which form simple chains in the cyclo­hexane derivative, (I), and centrosymmetric dimers, of both symmetry‐independent mol­ecules, in the cyclo­hexa‐2,5‐diene, (II). These strong synthons are further stabilized by C[triple‐bond]C—H?O=C, Cmethylene—H?O(H) and Cmethyl—H?O(H) interactions. The direct intermolecular interactions between donors and acceptors in the gem‐alkynol group, which characterize the bis­(gem‐alkynol) analogues of (I) and (II), are not present in the ketone derivatives studied here.  相似文献   

17.
The (4E)‐N‐(4‐chlorophenyl)‐5‐(3‐chlorophenyl)‐2‐diazo‐3‐oxopent‐4‐enoic acid amides 5a˜j were synthesized with N‐(4‐chlorophenyl)‐2‐diazo‐3‐oxobutyramide 4 from p‐chloroaniline and various arylaldehydes. The yielded products 5a˜j were investigated with NMR, MS, IR, and X‐ray crystallographic techniques.  相似文献   

18.
19.
20.
This study presents the coordination modes and crystal organization of a calcium–potassium coordination polymer, poly[hexaaquabis(μ4‐4‐carboxybenzenesulfonato‐κ4O1:O1′:O1′′:O4)bis(μ3‐4‐carboxybenzenesulfonato‐κ2O1:O1′)calcium(II)dipotassium(I)], [CaK2(C7H5O5S)4(H2O)6]n, displaying a novel two‐dimensional framework. The potassium ion is seven‐coordinated by four sulfonate and one carboxyl O atom located on five different acid ligands, two of which are unique, and by two symmetry‐independent water O atoms. A pair of close potassium ions share two inversion‐related sulfonate O‐atom sites to form a dimeric K2O12 unit, which is extended into a one‐dimensional array along the a‐axis direction. The six‐coordinate Ca2+ ion occupies a special position () at (0, , ) and is surrounded by four sulfonate O atoms from two inversion‐related pairs of unique acid monoanions and by two O atoms from aqua ligands. The compound displays a layered structure, with K2O12 and CaO6 polyhedra in the layers and aromatic linkers between the layers. The three‐dimensional scaffold is open, with nano‐sized channels along the c axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号