首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electric and magnetic separation have been in use for many years in the mineral and chemical industries. The development of new technologies1 in the field of magnetic separation, such as magnetohydrostatic separation (MHS), high-gradient magnetic separation (HGMS), wet high-intensity magnetic separation (WHIMS), and magnetic filtration (MF), has generated increasing interest in the2–4 behavior of similar methods such as wet dielectric separation5 dielectrophoretic levitation and fractionation, and dielectric filtration6–7 - all using non-uniform electric fields and polarization. In all these cases dielectric particles in a heterogeneous electric or magnetic field are subjected to the action of ponderomotive (gradient) forces.  相似文献   

2.
We study the phase segregation in magnetite ferrofluids under the influence of an external magnetic field. A phase with lower nanoparticle density and corresponding higher optical transmission is formed in the bottom of a glass cell in the presence of only a very modest magnetic field gradient (smaller than 25 T/m). The flux density in our magnetic configuration is simulated using finite element methods. Upon switching off the external magnetic field, the low-density phase develops into a 'bubble'-like feature. The kinetics of this 'bubble' in the absence and presence of a magnetic field are described and analyzed in terms of a simple model, which takes into account buoyancy and drag forces.  相似文献   

3.
The colloidal stability of dispersions comprised of magnetite nanoparticles coated with polydimethylsiloxane (PDMS) oligomers was investigated theoretically and experimentally. Particle-particle interaction potentials in a theta solvent and in a good solvent for the PDMS were predicted by calculating van der Waals, electrostatic, steric, and magnetic forces as functions of interparticle separation distances. A variety of nanoparticle sizes and size distributions were considered. Calculations of the interparticle potential in dilute suspensions indicated that flocculation was likely for the largest 1% of the population of particles. Finally, the rheology of these complexes over time in the absence of a solvent was measured to probe their stabilities against flocculation as neat fluids. An increase in viscosity was observed upon aging, suggesting that some agglomeration occurs with time. However, the effects of aging could be removed by exposing the sample to high shear, indicating that the magnetic fluids were not irreversibly flocculated.  相似文献   

4.
Phosphatidylcholine-based magnetoliposomes containing specific ligands for biological molecules, so-called affinity magnetoliposomes (AML), may prove to be useful as adsorbents in applications such as diagnosis or anchoring and delivery of drugs at specific sites in the human body. In the present study, the performance of affinity magnetoliposomes to adsorb anticardiolipin antibodies (aCL) from a previously characterized pool of patients with autoimmune diseases is described. The magnetic vesicles were prepared by enrobing nanometer-sized colloidal magnetite particles with a phospholipid bilayer composed of dimyristoylphosphatidylcholine (DMPC) and the affinity lipid ligand cardiolipin (CL). Adsorption of antibodies onto the affinity magnetoliposomes assayed using a high-gradient magnetophoresis (HGM) system, in which the magnetoliposomes were first magnetically captured on stainless steel fibers, and which were subsequently overflowed either with a pool of sera from autoimmune patients or sera of healthy individuals as a control. The spectrophotometric assay showed stronger changes in absorbance spectra when the affinity magnetoliposomes containing cardiolipin were added to sera of autoimmune patients than when they were added to sera of healthy individuals. The breakthrough curves obtained from a frontal analyses of the adsorption in the magnetophoresis system showed a 10% difference for total adsorbed IgG when sera of autoimmune and healthy individuals were assayed on magnetoliposomes containing cardiolipin.  相似文献   

5.
Magnetite (Fe3O4) nanoparticles have been synthesized and complexed with carboxylate-functional block copolymers, and then aqueous dispersions of the complexes were investigated as functions of their chemical and morphological structures. The block copolymer dispersants had either poly(ethylene oxide), poly(ethylene oxide-co-propylene oxide), or poly(ethylene oxide-b-propylene oxide) outer blocks, and all of them had a polyurethane center block that contained pendent carboxylate groups. The complexes were formed through interactions of the carboxylates with the surfaces of the magnetite nanoparticles. The magnetite cores of the magnetite-copolymer complexes were near 10 nm in diameter, and the particles were superparamagnetic. Complexes with mass ratios of polymer to magnetite varying from 50:50 to 85:15 were studied. One of our objectives is to design complexes that form stable dispersions of discrete particles in water, yet that can be actuated (moved together) upon exposure to a uniform magnetic field. DLVO calculations that accounted for magnetic attractive interparticle forces, as well as van der Waals, steric, and electrostatic forces are presented. Compositions were identified wherein a shallow, attractive interparticle potential minimum appears once the magnetic term is applied. This suggests that it may be possible to tune the structures of superparamagnetic nanoparticle shells to allow discrete dispersions without a field, yet weak flocculation could be induced upon exposure to a field.  相似文献   

6.
A finite element model of the electrostatic double layer interaction between an approaching colloidal particle and a small region of a charged planar surface containing four previously deposited particles is presented. The electrostatic interaction force experienced by the approaching particle is obtained by solving the Poisson-Boltzmann equation with appropriate boundary conditions representing this complex geometry. The interaction forces obtained from the detailed three-dimensional finite element simulations suggest that for the many-body scenario addressed here, the electrostatic double layer repulsion experienced by the approaching particle is less than the corresponding sphere-plate interaction due to the presence of the previously deposited particles. The reduction in force is quite significant when the screening length of the electric double layer becomes comparable to the particle radius (kappaa approximately 1). The results also suggest that the commonly used technique of pairwise addition of binary interactions can grossly overestimate the net electrostatic double layer interaction forces in such situations. The simulation methodology presented here can form a basis for investigating the influence of several previously deposited particles on the electrostatic repulsion experienced by a particle during deposition onto a substrate.  相似文献   

7.
The properties of polymer-coated magnetite nanoparticles, which have the potential to be used as effective magnetic resonance contrast agents, have been studied. The magnetite particles were synthesized by using continuous synthesis in an aqueous solution. The polymer-coated magnetite nanoparticles were synthesized by seed precipitation polymerization of methacrylic acid and hydroxyethyl methacrylate in the presence of the magnetite nanoparticles. The particle size was measured by laser light scattering. It was shown that the particle size, variance, magnetic properties, and stability of aqueous magnetite colloidal dispersion strictly depend on the nature of the stabilizing agent. The average hydrodynamic radius of the magnetite particles was found to be 5.7 nm in the stable aqueous colloidal dispersion. An inclusion of the magnetite particle into a hydrophilic polymeric shell increases the stability of the dispersion and decreases the influence of the stabilizing agent on the magnetic and structural properties of the magnetite particles as was shown by X-ray diffraction and M?ssbauer and IR spectroscopy, as well as by vibrating sample magnetometry. The variation in the polymeric shell size and the polymer net density can be useful tools for evaluation of the polymer-coated magnetite particles as effective contrast agents. Copyright 1999 Academic Press.  相似文献   

8.
The magnetic properties of arabinogalactan-stabilized iron-containing nanobiocomposites, which include magnetite nanoparticles, were studied. The magnetic characteristics of samples were measured on a SQUID magnetometer in the temperature range of 5–320 K and magnetic fields of up to 1.5·104 G. The coercive force and the residual magnetization of ferroarabinogalactan nanocomposites are inversely dependent on the magnetite nanoparticle size.  相似文献   

9.
The magnetic composite materials that consist of transparent matrix and magnetic fine particles are expected to have large residual magnetization and coercive force because of their fine magnetic domain structure, and also to show magneto-optical effects. Silica gels containing magnetite (Fe3O4) fine particles were prepared by sol-gel method. The magnetic, optical and magneto-optical properties of the composites were investigated by measurements of magnetization curves, UV-visible spectra and Faraday rotation in visible range. The saturation magnetization of the composite was almost as same as that expected from the amount of magnetite fine particles in it. Although the composites had large and broad absorption at around 400 nm, they still maintained their transparency. The origins of decrement of transparency attributed to the optical absorption of magnetite and scattering due to magnetite fine particles. The whole composites showed positive Faraday rotation under external static magnetic field due to the large contribution of diamagnetic silica gel matrix. Magnetite contributed negative Faraday rotation with maximum at around 470–480 nm to the magneto-optical spectra of the composites.  相似文献   

10.
In this work, we describe an experimental investigation on the colloidal stability of suspensions of three kinds of particles, including magnetite, poly(lactic acid) (PLA), and composite core/shell colloids formed by a magnetite core surrounded by a PLA shell. The experiments were performed with dilute suspensions, so that recording the optical absorbance with time gives a suitable indication of the aggregation and sedimentation of the suspensions. The method allowed us to distinguish very accurately between the different surface and magnetic forces responsible for the structures acquired by particle aggregates. Thus, the pure PLA suspensions are very sensitive to ionic strength and almost unaffected by pH changes. On the contrary, the stability of magnetite systems is mainly controlled by pH. The effect of vertical magnetic fields on the stability of magnetite and magnetite/PLA suspensions is also investigated. The PLA shell reduces the magnetic responsiveness of magnetite, but it is demonstrated that the mixed particles can also form structures induced by the field, despite their lower magnetization, and they can be considered in magnetically targeted biomedical applications.  相似文献   

11.
We have measured the force between a weakly charged micron-sized colloidal particle and flat substrate in the presence of highly charged nanoparticles of the same sign under solution conditions such that the nanoparticles physically adsorb to the colloidal particle and substrate. The objective was to investigate the net effect on the force profile between the microparticle and flat substrate arising from both nanoparticle adsorption and nanoparticles in solution. The experiments used colloidal probe atomic force microscopy (CP-AFM) to measure the force profile between a relatively large (5 μm) colloidal probe glass particle and a planar glass substrate in aqueous solutions at varying concentrations of spherical nanoparticles. At very low nanoparticle concentrations, the primary effect was an increase in the electrostatic repulsion between the surfaces due to adsorption of the more highly charged nanoparticles. As the nanoparticle concentration is increased, a depletion attraction formed, followed by longer-range structural forces at the highest nanoparticle concentrations studied. These results suggest that, depending on their concentration, such nanoparticles can either stabilize a dispersion of weakly-charged colloidal particles or induce flocculation. This behavior is qualitatively different from that in nonadsorbing systems, where the initial effect is the development of an attractive depletion force.  相似文献   

12.
The clustering and stability of magnetic nanoparticles coated with random copolymers of acrylic acid, styrenesulfonic acid, and vinylsulfonic acid has been studied. Clusters larger than 50 nm are formed when the coatings are made using too low or too high molecular weight polymers or using insufficient amounts of polymer. Low-molecular-weight polymers result in thin coatings that do not sufficiently screen van der Waals attractive forces, while high-molecular-weight polymers bridge between particles, and insufficient polymer results in bare patches on the magnetite surface. The stability of the resulting clusters is poor, but when an insufficient polymer is used as primary coating, and a secondary polymer is added to coat remaining bare magnetite, the clusters are stable in high salt concentrations (>5 M NaCl), while retaining the necessary cluster size for efficient magnetic recovery. The magnetite cores were characterized by TEM and vibrating sample magnetometry, while the clusters were characterized by dynamic light scattering. The clustering and stability are interpreted in terms of the particle-particle interaction forces, and the optimal polymer size can be predicted well on the basis of these forces and the solution structure and hydrophobicity of the polymer. The size of aggregates formed by limited polymer can be predicted with a diffusion-limited colloidal aggregation model modified with a sticking probability based on fractional coating of the magnetite cores.  相似文献   

13.
This work presents a theoretical study of the forces established between colloidal particles connected by means of a concave liquid bridge, where the solid particles are partially wetted by a certain amount of liquid also possessing a dry portion of their surfaces. In our analysis, we adopt a two-particle model assuming that the solids are spherical and with the same sizes and properties and that the liquid meniscus features an arc-of-circumference contour. The forces considered are the typical capillary ones, namely, wetting and Laplace forces, as well as the van der Waals force, assuming the particles uncharged. We analyze different parameters which govern the liquid bridge: interparticle separation, wetting angle, and liquid volume, which later determine the value of the forces. Due to the dual characteristic of the particles' surfaces, wet and dry, the forces are to be determined numerically in each case. The results indicate that the capillary forces are dominant in most of the situations meanwhile the van der Waals force is noticeable at very short distances between the particles.  相似文献   

14.
Lin YC  Jen CP 《Lab on a chip》2002,2(3):164-169
In this study, the separation mechanism employed in hydrodynamic chromatography in microchannel devices is analyzed. The main purpose of this work is to provide a methodology to develop a predictive model for hydrodynamic chromatography for biological macromolecules in microchannels and to assess the importance of various phenomenological coefficients. A theoretical model for the hydrodynamic chromatography of particles in a microchannel is investigated herein. A fully developed concentration profile for non-reactive particles in a microchannel was obtained to elucidate the hydrodynamic chromatography of these particles. The external forces acting on the particles considered in this model include the van der Waals attractive force, double-layer force as well as the gravitational force. The surface forces, such as van der Waals attractive force as well as the double-layer repulsive force, can either enhance or hinder the average velocity of the macromolecular particles. The average velocity of the particles decreases with the molecular radius because the van der Waals attractive force increases the concentration of the particles near the channel surface, which is the low-velocity region. The transport velocity of the particles is dominated by the gravity and the higher density enlarges the effect caused by gravity.  相似文献   

15.
We present the synthesis of nonspherical magnetic microparticles with multiple functionalities, shapes, and chemistries. Particle synthesis was performed in two steps: polymeric microparticles functionalized homogenously with carboxyl groups were generated using stop-flow lithography, and then in situ coprecipitation was used to grow magnetic nanoparticles at these carboxyl sites. With successive growth of magnetic nanoparticles, we obtained polymeric particles with saturation magnetizations of up to 42 emu/g microparticle. The growth in the magnetic nanoparticle mean size and polydispersity was determined from the magnetization curves obtained following each growth cycle; nanoparticle sizes were limited by the physical constraint of the effective mesh within the hosting gel microparticle. Particles with spatially segregated domains of varying magnetic properties (e.g., Janus particles, particles with step changes in magnetite concentration, etc.) can be synthesized readily using this approach.  相似文献   

16.
This work investigates the feasibility of engineering surface wettability by using different nanoparticles. As an illustration, detailed formation of gas bubbles on top of a stainless steel substrate plate in a quiescent pool of aqueous gold and alumina nanofluids is studied. The presence of nanoparticles is shown to be able to modify the dynamics of triple line and bubble growth significantly. An early pinning of the bubble triple line is observed and a larger bubble contact angle is found for bubbles growing in a gold nanofluid, whereas an opposite phenomenon is observed for bubbles growing in an alumina nanofluid compared to those of pure water. Other bubble parameters such as departure volume, bubble frequency, and waiting time of bubble formation are also affected by the presence of nanoparticles. The variation of solid surface tensions due to the existence of nanoparticles and the resultant force at the triple line should be responsible for such differences. Such results illustrate the big potential of nanoparticle in engineering surface wettability of a solid-liquid-gas system.  相似文献   

17.
车津晶  万谦宏 《化学进展》2006,18(2):344-348
利用磁场诱导的微粒运动即磁泳对磁响应性粒子进行精细分离,是近年来发展起来的选择性分离细胞和高分子量核酸的有效技术。本文在阐明磁泳分离原理的基础上,介绍了磁泳分离的分流薄层分级技术、四极磁场流动分离技术和微芯片上的自由流磁泳分离技术的装置构造、工作原理及其在生物分离分析中的应用。  相似文献   

18.
利用磁场诱导的微粒运动即磁泳对磁响应性粒子进行精细分离,是近年来发展起来的选择性分离细胞和高分子量核酸的有效技术。本文在阐明磁泳分离原理的基础上,介绍了磁泳分离的分流薄层分级技术、四极磁场流动分离技术和微芯片上的自由流磁泳分离技术的装置构造、工作原理及其在生物分离分析中的应用。  相似文献   

19.
Three-dimensional colloidal crystals made of ferromagnetic particles, such as magnetite (Fe(3)O(4)), cannot be synthesized in principle because of the strong attractive magnetic interaction. However, we discovered colloidal crystals composed of polyhedral magnetite nanocrystallites of uniform size in the range of a few hundred nanometers in the Tagish Lake meteorite. Those colloidal crystals were formed 4.6 billion years ago and thus are much older than natural colloidal crystals on earth, such as opals, which formed about 100 million years ago. We found that the size of each individual magnetite particle determines its morphology, which in turn plays an important role in deciding the packing structure of the colloidal crystals. We also hypothesize that each particle has a flux-closed magnetic domain structure, which reduces the interparticle magnetic force significantly.  相似文献   

20.
Atomic force microscopy (AFM) is used to study the size, shape, and polydispersity of a variety of magnetic and nonmagnetic model colloids, previously imaged by transmission electron microscopy (TEM) only. Both height and phase images are analyzed and special attention is given to 3D morphology and softness of particles, as well as structures and presence of secondary components in the colloid, difficult to investigate with TEM. Several methods of tip characterization followed by deconvolution were applied in order to improve the accuracy of lateral diameter determination. In the case of magnetite particles dispersed in conventional ferrofluids, we explore both experimentally and theoretically the possibility of using magnetic force microscopy (MFM). We propose and discuss several models which allow to estimate the magnetic moment of a single domain superparamagnetic sphere using MFM, which cannot be done with other techniques; alternatively the tip magnetization can be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号