首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a local convergence analysis of Gauss-Newton method for solving nonlinear least square problems. Using more precise majorant conditions than in earlier studies such as Chen (Comput Optim Appl 40:97–118, 2008), Chen and Li (Appl Math Comput 170:686–705, 2005), Chen and Li (Appl Math Comput 324:1381–1394, 2006), Ferreira (J Comput Appl Math 235:1515–1522, 2011), Ferreira and Gonçalves (Comput Optim Appl 48:1–21, 2011), Ferreira and Gonçalves (J Complex 27(1):111–125, 2011), Li et al. (J Complex 26:268–295, 2010), Li et al. (Comput Optim Appl 47:1057–1067, 2004), Proinov (J Complex 25:38–62, 2009), Ewing, Gross, Martin (eds.) (The merging of disciplines: new directions in pure, applied and computational mathematics 185–196, 1986), Traup (Iterative methods for the solution of equations, 1964), Wang (J Numer Anal 20:123–134, 2000), we provide a larger radius of convergence; tighter error estimates on the distances involved and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.  相似文献   

2.
We provide two new characterizations of the Takagi function as the unique bounded solution of some systems of two functional equations. The results are independent of those obtained by Kairies (Wy? Szko? Ped Krakow Rocznik Nauk Dydakt Prace Mat 196:73–82, 1998), Kairies (Aequ Math 53:207–241, 1997), Kairies (Aequ Math 58:183–191, 1999) and Kairies et al. (Rad Mat 4:361–374, 1989; Errata, Rad Mat 5:179–180, 1989).  相似文献   

3.
The efficient determination of tight lower bounds in a branch-and-bound algorithm is crucial for the global optimization of models spanning numerous applications and fields. The global optimization method \(\alpha \)-branch-and-bound (\(\alpha \)BB, Adjiman et al. in Comput Chem Eng 22(9):1159–1179, 1998b, Comput Chem Eng 22(9):1137–1158, 1998a; Adjiman and Floudas in J Global Optim 9(1):23–40, 1996; Androulakis et al. J Global Optim 7(4):337–363, 1995; Floudas in Deterministic Global Optimization: Theory, Methods and Applications, vol. 37. Springer, Berlin, 2000; Maranas and Floudas in J Chem Phys 97(10):7667–7678, 1992, J Chem Phys 100(2):1247–1261, 1994a, J Global Optim 4(2):135–170, 1994), guarantees a global optimum with \(\epsilon \)-convergence for any \(\mathcal {C}^2\)-continuous function within a finite number of iterations via fathoming nodes of a branch-and-bound tree. We explored the performance of the \(\alpha \)BB method and a number of competing methods designed to provide tight, convex underestimators, including the piecewise (Meyer and Floudas in J Global Optim 32(2):221–258, 2005), generalized (Akrotirianakis and Floudas in J Global Optim 30(4):367–390, 2004a, J Global Optim 29(3):249–264, 2004b), and nondiagonal (Skjäl et al. in J Optim Theory Appl 154(2):462–490, 2012) \(\alpha \)BB methods, the Brauer and Rohn+E (Skjäl et al. in J Global Optim 58(3):411–427, 2014) \(\alpha \)BB methods, and the moment method (Lasserre and Thanh in J Global Optim 56(1):1–25, 2013). Using a test suite of 40 multivariate, box-constrained, nonconvex functions, the methods were compared based on the tightness of generated underestimators and the efficiency of convergence of a branch-and-bound global optimization algorithm.  相似文献   

4.
The famous for its simplicity and clarity Newton–Kantorovich hypothesis of Newton’s method has been used for a long time as the sufficient convergence condition for solving nonlinear equations. Recently, in the elegant study by Hu et al. (J Comput Appl Math 219:110–122, 2008), a Kantorovich-type convergence analysis for the Gauss–Newton method (GNM) was given improving earlier results by Häubler (Numer Math 48:119–125, 1986), and extending some results by Argyros (Adv Nonlinear Var Inequal 8:93–99, 2005, 2007) to hold for systems of equations with constant rank derivatives. In this study, we use our new idea of recurrent functions to extend the applicability of (GNM) by replacing existing conditions by weaker ones. Finally, we provide numerical examples to solve equations in cases not covered before (Häubler, Numer Math 48:119–125, 1986; Hu et al., J Comput Appl Math 219:110–122, 2008; Kontorovich and Akilov 2004).  相似文献   

5.
This work focuses on sampling from hidden Markov models (Cappe et al. 2005) whose observations have intractable density functions. We develop a new sequential Monte Carlo (e.g. Doucet, 2011) algorithm and a new particle marginal Metropolis-Hastings (Andrieu et al J R Statist Soc Ser B 72:269-342, 2010) algorithm for these purposes. We build from Jasra et al (2013) and Whiteley and Lee (Ann Statist 42:115-141, 2014) to construct the sequential Monte Carlo (SMC) algorithm, which we call the alive twisted particle filter. Like the alive particle filter (Amrein and Künsch, 2011, Jasra et al, 2013), our new SMC algorithm adopts an approximate Bayesian computation (Tavare et al. Genetics 145:505-518, 1997) estimate of the HMM. Our alive twisted particle filter also uses a twisted proposal as in Whiteley and Lee (Ann Statist 42:115-141, 2014) to obtain a low-variance estimate of the HMM normalising constant. We demonstrate via numerical examples that, in some scenarios, this estimate has a much lower variance than that of the estimate obtained via the alive particle filter. The low variance of this normalising constant estimate encourages the implementation of our SMC algorithm within a particle marginal Metropolis-Hastings (PMMH) scheme, and we call the resulting methodology “alive twisted PMMH”. We numerically demonstrate, on a stochastic volatility model, how our alive twisted PMMH can converge faster than the standard alive PMMH of Jasra et al (2013).  相似文献   

6.
We discuss the existence of a blow-up solution for a multi-component parabolic–elliptic drift–diffusion model in higher space dimensions. We show that the local existence, uniqueness and well-posedness of a solution in the weighted \(L^2\) spaces. Moreover we prove that if the initial data satisfies certain conditions, then the corresponding solution blows up in a finite time. This is a system case for the blow up result of the chemotactic and drift–diffusion equation proved by Nagai (J Inequal Appl 6:37–55, 2001) and Nagai et al. (Hiroshima J Math 30:463–497, 2000) and gravitational interaction of particles by Biler (Colloq Math 68:229–239, 1995), Biler and Nadzieja (Colloq Math 66:319–334, 1994, Adv Differ Equ 3:177–197, 1998). We generalize the result in Kurokiba and Ogawa (Differ Integral Equ 16:427–452, 2003, Differ Integral Equ 28:441–472, 2015) and Kurokiba (Differ Integral Equ 27(5–6):425–446, 2014) for the multi-component problem and give a sufficient condition for the finite time blow up of the solution. The condition is different from the one obtained by Corrias et al. (Milan J Math 72:1–28, 2004).  相似文献   

7.
We suggest new characterizations of the Banzhaf value without the symmetry axiom, which reveal that the characterizations by Lehrer (Int J Game Theory 17:89–99, 1988) and Nowak (Int J Game Theory 26:137–141, 1997) as well as most of the characterizations by Casajus (Theory Decis 71:365–372, 2011b) are redundant. Further, we explore symmetry implications of Lehrer’s 2-efficiency axiom.  相似文献   

8.
Despite the development of sophisticated techniques such as sequential Monte Carlo (Del Moral et al. in J R Stat Soc Ser B 68(3):411–436, 2006), importance sampling (IS) remains an important Monte Carlo method for low dimensional target distributions (Chopin and Ridgway in Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation, 32:64–87, 2017). This paper describes a new technique for constructing proposal distributions for IS, using affine arithmetic (de Figueiredo and Stolfi in Numer Algorithms 37(1–4):147–158, 2004). This work builds on the Moore rejection sampler (Sainudiin in Machine interval experiments, Cornell University, Ithaca, 2005; Sainudiin and York in Algorithms Mol Biol 4(1):1, 2009) to which we provide a comparison.  相似文献   

9.
In this paper we will continue the analysis undertaken in Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), Bongiorno et al. (Rocky Mt J Math 40(6):1745–1777, 2010), Triolo (Rend Circ Mat Palermo (2) 60(3):409–416, 2011) on the general problem of extending the noncommutative integration in a *-algebra of measurable operators. As in Aiena et al. (Filomat 28(2):263–273, 2014), Bagarello (Stud Math 172(3):289–305, 2006) and Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), the main problem is to represent different types of partial *-algebras into a *-algebra of measurable operators in Segal’s sense, provided that these partial *-algebras posses a sufficient family of positive linear functionals (states) (Fragoulopoulou et al., J Math Anal Appl 388(2):1180–1193, 2012; Trapani and Triolo, Stud Math 184(2):133–148, 2008; Trapani and Triolo, Rend Circolo Mat Palermo 59:295–302, 2010; La Russa and Triolo, J Oper Theory, 69:2, 2013; Triolo, J Pure Appl Math, 43(6):601–617, 2012). In this paper, a new condition is given in an attempt to provide a extension of the non commutative integration.  相似文献   

10.
In this paper we provide an axiomatic foundation to Orlicz risk measures in terms of properties of their acceptance sets, by exploiting their natural correspondence with shortfall risk Föllmer and Schied (Stochastic finance. De Gruyter, Berlin, 2011), thus paralleling the characterization in Weber (Math Financ 16:419–442, 2006). From a financial point of view, Orlicz risk measures assess the stochastic nature of returns, in contrast to the common use of risk measures to assess the stochastic nature of a position’s monetary value. The correspondence with shortfall risk leads to several robustified versions of Orlicz risk measures, and of their optimized translation invariant extensions (Rockafellar and Uryasev in J Risk 2:21–42, 2000, Goovaerts et al. in Insur Math Econ 34:505–516, 2004), arising from an ambiguity averse approach as in Gilboa and Schmeidler (J Math Econ 18:141–153, 1989), Maccheroni et al. (Econometrica 74:1447–1498, 2006), Chateauneuf and Faro (J Math Econ 45:535–558, 2010), or from a multiplicity of Young functions. We study the properties of these robust Orlicz risk measures, derive their dual representations, and provide some examples and applications.  相似文献   

11.
Since at least de Finetti (Annales de l’Institut Henri Poincare 7:1–68, 1937), preference symmetry assumptions have played an important role in models of decision making under uncertainty. In the current paper, we explore (1) the relationship between the symmetry assumption of Klibanoff et al. (KMS) (Econometrica 82:1945–1978, 2014) and alternative symmetry assumptions in the literature, and (2) assuming symmetry, the relationship between the set of relevant measures, shown by KMS (2014) to reflect only perceived ambiguity, and the set of measures (which we will refer to as the Bewley set) developed by Ghirardato et al. (J Econ Theory 118:133–173, 2004), Nehring (Ambiguity in the context of probabilistic beliefs, working paper, 2001, Bernoulli without Bayes: a theory of utility-sophisticated preference, working paper, 2007) and Ghirardato and Siniscalchi (A more robust definition of multiple priors, working paper, 2007, Econometrica 80:2827–2847, 2012). This Bewley set is the main alternative offered in the literature as possibly representing perceived ambiguity. Regarding symmetry assumptions, we show that, under relatively mild conditions, a variety of preference symmetry conditions from the literature [including that in KMS (2014)] are equivalent. In KMS (2014), we showed that, under symmetry, the Bewley set and the set of relevant measures are not always the same. Here, we establish a preference condition, No Half Measures, that is necessary and sufficient for the two to be the same under symmetry. This condition is rather stringent. Only when it is satisfied may the Bewley set be interpreted as reflecting only perceived ambiguity and not also taste aspects such as ambiguity aversion.  相似文献   

12.
We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study  相似文献   

13.
We investigate the existence of wandering Fatou components for polynomial skew-products in two complex variables. In 2004, the non-existence of wandering domains near a super-attracting invariant fiber was shown in Lilov (Fatou theory in two dimensions, PhD thesis, University of Michigan, 2004). In 2014, it was shown in Astorg et al. (Ann Math, arXiv:1411.1188 [math.DS], 2014) that wandering domains can exist near a parabolic invariant fiber. In Peters and Vivas (Math Z, arXiv:1408.0498, 2014), the geometrically attracting case was studied, and we continue this study here. We prove the non-existence of wandering domains for subhyperbolic attracting skew-products; this class contains the maps studied in Peters and Vivas (Math Z, arXiv:1408.0498, 2014). Using expansion properties on the Julia set in the invariant fiber, we prove bounds on the rate of escape of critical orbits in almost all fibers. Our main tool in describing these critical orbits is a possibly singular linearization map of unstable manifolds.  相似文献   

14.
Theorems due to Stenger (Bull Am Math Soc 74:369–372, 1968) and Nudelman (Int Equ Oper Theory 70:301–305, 2011) in Hilbert spaces and their generalizations to Krein spaces in Azizov and Dijksma (Int Equ Oper Theory 74(2):259–269, 2012) and Azizov et al. (Linear Algebra Appl 439:771–792, 2013) generate additional questions about properties a finite-codimensional compression \({T_0}\) of a symmetric or self-adjoint linear relation \({T}\) may or may not inherit from \({T}\). These questions concern existence of invariant maximal nonnegative subspaces, definitizability, singular critical points and defect indices.  相似文献   

15.
In this paper we derive a series space \(\vert C_{\lambda,\mu} \vert _{k}\) using the well known absolute Cesàro summability \(\vert C_{\lambda,\mu} \vert _{k}\) of Das (Proc. Camb. Philol. Soc. 67:321–326, 1970), compute its \(\beta\)-dual, give some algebraic and topological properties, and characterize some matrix operators defined on that space. So we generalize some results of Bosanquet (J. Lond. Math. Soc. 20:39–48, 1945), Flett (Proc. Lond. Math. Soc. 7:113–141, 1957), Mehdi (Proc. Lond. Math. Soc. (3)10:180–199, 1960), Mazhar (Tohoku Math. J. 23:433–451, 1971), Orhan and Sar?göl (Rocky Mt. J. Math. 23(3):1091–1097, 1993) and Sar?göl (Commun. Math. Appl. 7(1):11–22, 2016; Math. Comput. Model. 55:1763–1769, 2012).  相似文献   

16.
This note presents a commutant lifting theorem (CLT) of Agler type for the annulus \({\mathbb A}\) . Here the relevant set of test functions are the minimal inner functions on \({\mathbb A}\) —those analytic functions on \({\mathbb A}\) which are unimodular on the boundary and have exactly two zeros in \({\mathbb A}\) —and the model space is determined by a distinguished member of the Sarason family of kernels over \({\mathbb A}\) . The ideas and constructions borrow freely from the CLT of Ball et al. (Indiana Univ Math J 48(2):653–675, 1999) and Archer (Unitary dilations of commuting contractions. PhD thesis, University of Newcastle, 2004) for the polydisc, and Ambrozie and Eschmeier (A commutant lifting theorem on analytic polyhedra. Topological algebras, their applications, and related topics, 83108, Banach Center Publications, vol 67. Polish Academy of Sciences, Warsaw, 2005) for the ball in \({\mathbb C^n}\) , as well as generalizations of the de Branges–Rovnyak construction like found in Agler (On the representation of certain holomorphic functions defined on a polydisc. Topics in operator theory: Ernst D. Hellinger memorial volume, operator theory: advances and applications, vol 48. Birkhäuser, Basel, pp 47–66, 1990) and Ambrozie et al. (J Oper Theory 47(2):287–302, 2002). It offers a template for extending the result in McCullough and Sultanic (Complex Anal Oper Theory 1(4):581–620, 2007) to infinitely many test functions. Among the needed new ingredients is the formulation of the factorization implicit in the statement of the results in Ball et al. (Indiana Univ Math J 48(2):653–675, 1999) and Archer (Unitary dilations of commuting contractions. PhD thesis, University of Newcastle, 2004) and McCullough and Sultanic (Complex Anal Oper Theory 1(4):581–620, 2007) in terms of certain functional Hilbert spaces of Hilbert space valued functions.  相似文献   

17.
The goal of this paper is to point out that the results obtained in the recent papers (Chen and Song in Nonlinear Anal 72:1895–1901, 2010; Chu in J Math Anal Appl 327:1041–1045, 2007; Chu et al. in Nonlinear Anal 59:1001–1011, 2004a, J. Math Anal Appl 289:666–672, 2004b) can be seriously strengthened in the sense that we can significantly relax the assumptions of the main results so that we still get the same conclusions. In order to do this first, we prove that for \(n \ge 3\) any transformation which preserves the n-norm of any n vectors is automatically plus-minus linear. This will give a re-proof of the well-known Mazur–Ulam-type result that every n-isometry is automatically affine (\(n \ge 2\)) which was proven in several papers, e.g. in Chu et al. (Nonlinear Anal 70:1068–1074, 2009). Second, following the work of Rassias and ?emrl (Proc Am Math Soc 118:919–925, 1993), we provide the solution of a natural Aleksandrov-type problem in n-normed spaces, namely, we show that every surjective transformation which preserves the unit n-distance in both directions (\(n\ge 2\)) is automatically an n-isometry.  相似文献   

18.
We consider the problem of hedging a European contingent claim in a Bachelier model with temporary price impact as proposed by Almgren and Chriss (J Risk 3:5–39, 2001). Following the approach of Rogers and Singh (Math Financ 20:597–615, 2010) and Naujokat and Westray (Math Financ Econ 4(4):299–335, 2011), the hedging problem can be regarded as a cost optimal tracking problem of the frictionless hedging strategy. We solve this problem explicitly for general predictable target hedging strategies. It turns out that, rather than towards the current target position, the optimal policy trades towards a weighted average of expected future target positions. This generalizes an observation of Gârleanu and Pedersen (Dynamic portfolio choice with frictions. Preprint, 2013b) from their homogenous Markovian optimal investment problem to a general hedging problem. Our findings complement a number of previous studies in the literature on optimal strategies in illiquid markets as, e.g., Gârleanu and Pedersen (Dynamic portfolio choice with frictions. Preprint, 2013b), Naujokat and Westray (Math Financ Econ 4(4):299–335, 2011), Rogers and Singh (Math Financ 20:597–615, 2010), Almgren and Li (Option hedging with smooth market impact. Preprint, 2015), Moreau et al. (Math Financ. doi: 10.1111/mafi.12098, 2015), Kallsen and Muhle-Karbe (High-resilience limits of block-shaped order books. Preprint, 2014), Guasoni and Weber (Mathematical Financ. doi: 10.1111/mafi.12099, 2015a; Nonlinear price impact and portfolio choice. Preprint, 2015b), where the frictionless hedging strategy is confined to diffusions. The consideration of general predictable reference strategies is made possible by the use of a convex analysis approach instead of the more common dynamic programming methods.  相似文献   

19.
The aim of this note is to prove, in the spirit of a rigidity result for isolated singularities of Schlessinger see Schlessinger (Invent Math 14:17–26, 1971) or also Kleiman and Landolfi (Compositio Math 23:407–434, 1971), a variant of a rigidity criterion for arbitrary singularities (Theorem 2.1 below). The proof of this result does not use Schlessinger’s Deformation Theory [Schlessinger (Trans Am Math Soc 130:208–222, 1968) and Schlessinger (Invent Math 14:17–26, 1971)]. Instead it makes use of Local Grothendieck-Lefschetz Theory, see (Grothendieck 1968, Éxposé 9, Proposition 1.4, page 106) and a Lemma of Zariski, see (Zariski, Am J Math 87:507–536, 1965, Lemma 4, page 526). I hope that this proof, although works only in characteristic zero, might also have some interest in its own.  相似文献   

20.
In this short note, we generalized an energy estimate due to Malchiodi–Martinazzi (J Eur Math Soc 16:893–908, 2014) and Mancini–Martinazzi (Calc Var 56:94, 2017). As an application, we used it to reprove existence of extremals for Trudinger–Moser inequalities of Adimurthi–Druet type on the unit disc. Such existence problems in general cases had been considered by Yang  (Trans Am Math Soc 359:5761–5776, 2007; J Differ Equ 258:3161–3193, 2015) and Lu–Yang (Discrete Contin Dyn Syst 25:963–979, 2009) by using another method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号