首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The syntheses, structures, and magnetochemical characterization of two novel mixed-chelate undeca- and dodecanuclear ferric complexes are reported. Preformed tri- and pentanuclear ferric complexes that possess tridentate Schiff base (L2- and (L'2-) and acetate ligands were reacted with 1,1,1-tris(hydroxymethyl)ethane (H3thme) to afford [Fe11O3(OH)(O2CMe)8(thme)2(L)6] (1) and [Fe12O4(O2CMe)8(thme)2(NH2(CH2)2O)2(L')6] (2), respectively, following structural agglomeration and rearrangement associated with ligand substitution. The incorporation of more than one type of ligand that can both chelate and bridge the Fe centers gives rise to the complicated molecular structures displayed by 1 and 2. As a result of the tripodal conformation of thme3-, the cores of both molecules incorporate several face-shared defect {Fe3O4}+ cuboidal subunits. Variable-temperature dc and ac magnetic susceptibility studies, together with low-temperature magnetization measurements, are consistent with S = 5/2 and S = 0 ground-state spins for 1 and 2, respectively, and suggest that excited states with higher spin values lie relatively close in energy to the ground state for both species. Low-temperature micro-SQUID measurements on oriented single crystals of 1 confirm the easy-axis type magnetic anisotropy suggested by conventional SQUID magnetometry. However magnetization hysteresis is not observed down to 0.04 K, which is ascribed to rapid quantum tunneling of the magnetization associated with transverse interactions.  相似文献   

2.
Alcoholysis of preformed tetranuclear and hexanuclear iron(III) clusters has been employed for the synthesis of four higher-nuclearity clusters. Treatment of [Fe(4)O(2)(O(2)CMe)(7)(bpy)(2)](ClO(4)) with phenol affords the hexanuclear cluster [Fe(6)O(3)(O(2)CMe)(9)(OPh)(2)(bpy)(2)](ClO(4)) (1). Reaction of [Fe(6)O(2)(OH)(2)(O(2)CR)(10)(hep)(2)] (R = Bu(t) or Ph) with PhOH affords the new "ferric wheel" complexes [Fe(8)(OH)(4)(OPh)(8)(O(2)CR)(12)] [R = Bu(t) (2) or Ph (3)]. Complexes 2 and 3 exhibit the same structure, which is an unprecedented type for Fe(III). In contrast, treatment of [Fe(6)O(2)(OH)(2)(O(2)CBu(t))(10)(hep)(2)] with MeOH leads to the formation of [Fe(10)(OMe)(20)(O(2)CBu(t))(10)] (4), which exhibits the more common type of ferric wheel seen in analogous complexes with other carboxylate groups. Solid-state variable-temperature magnetic susceptibility measurements indicate spin-singlet ground states for complexes 2 and 4. The recently developed semiempirical method ZILSH was used to estimate the pairwise exchange parameters (J(AB)) and the average spin couplings S(A)[empty set].S(B)[empty set] between the Fe(III) centers, providing a clear depiction of the overall magnetic behavior of the molecules. All exchange interactions between adjacent Fe(III) atoms are antiferromagnetic.  相似文献   

3.
The reaction of [Mn(3)O(O(2)CMe)(6)(py)(3)](ClO(4)) (1; 3Mn(III)) with [Mn(10)O(4)(OH)(2)(O(2)CMe)(8)(hmp)(8)](ClO(4))(4) (2; 10Mn(III)) in MeCN affords the new mixed-valent complex [Mn(21)O(14)(OH)(2)(O(2)CMe)(16)(hmp)(8)(pic)(2)(py)(H(2)O)](ClO(4))(4) (3; 3Mn(II)-18Mn(III); hmp(-) is the anion of 2-(hydroxymethyl)pyridine), with an average Mn oxidation state of +2.85. Complex 3.7MeCN crystallizes in the triclinic space group P. The structure consists of a low symmetry [Mn(21)(micro(4)-O)(4)(micro(3)-O)(12)(micro-O)(16)] core, with peripheral ligation provided by 16 MeCO(2)(-), 8 hmp(-), and 2 pic(-) groups and one molecule each of water and pyridine. The magnetic properties of 3 were investigated by both dc and ac magnetic susceptibility measurements. Fitting of dc magnetization data collected in the 0.1-0.8 T and 1.8-4.0 K ranges gave S = (17)/(2), D approximately -0.086 cm(-)(1), and g approximately 1.8, where S is the molecular spin of the Mn(21) complex and D is the axial zero-field splitting parameter. ac susceptibility studies in the 10-997 Hz frequency range reveal the presence of a frequency-dependent out-of-phase ac magnetic susceptibility (chi(M)' ') signal consistent with slow magnetization relaxation rates. Fitting of dc magnetization decay versus time data to the Arrhenius equation gave a value of the effective barrier to relaxation (U(eff)) of 13.2 K. Magnetization versus applied dc field sweeps exhibited hysteresis. Thus, complex 3 is a new member of the small but growing family of single-molecule magnets.  相似文献   

4.
A series of novel tri- and pentanuclear complexes composed of dinuclear LM(2) units (M=Co, Ni, Zn; L=24-membered macrocyclic hexaazadithiophenolate ligand) and ferrocenecarboxylate ([CpFeC(5)H(4)CO(2)](-)) or 1,1'-ferrocenedicarboxylate ([Fe(C(5)H(4)CO(2))(2)](2-)) groups is reported. The complexes [LM(II) (2)(O(2)CC(5)H(4)FeCp)](+) (M=Co (6), Ni (7), Zn (8)) and [(LM(II) (2))(2)(O(2)CC(5)H(4))(2)Fe](2+) (M=Co (9), Ni (10)) have been prepared by substitution reactions from labile [LM(II) (2)L'](+) precursors (L'=Cl, OAc) and the respective ferrocenecarboxylate anions in methanol. Mixed-valent [(LCo(II)Co(III))(2)(O(2)CC(5)H(4))(2)Fe](4+) (11) was prepared by oxidation of 9 with bromine. Complexes 7[BPh(4)], 8[BPh(4)], 9[BPh(4)](2), 10[BPh(4)](2), and 11[ClO(4)](4) have been characterized by X-ray crystallography; showing that the ferrocenyl carboxylates act as bidentate (7, 8) or bis-bidentate (9-11) bridging ligands towards one or two bioctahedral LM(2) subunits, respectively. The structures are retained in solution as indicated by NMR spectroscopic studies on the diamagnetic Zn(2)Fe complex 8[ClO(4)]. Electrochemical studies reveal significant anodic potential shifts for the oxidation potential of the ferrocenyl moieties upon complexation and the magnitude of the potential shift appears to correlate with the charge of the LM(2) subunits. This is qualitatively explained in terms of destabilizing electrostatic (Coulomb) interactions between the M(2+) ions of the LM(2) unit and the proximate ferrocenium fragment. An analysis of the temperature-dependent magnetic susceptibility data for 10[BPh(4)](2) shows the presence of weak ferromagnetic magnetic exchange interactions between the Ni(II) ions in the LNi(2) units. The exchange coupling across the ferrocenedicarboxylate bridge is negligible.  相似文献   

5.
Synthetic methods are described that have resulted in the formation of seven heterometallic complexes, all of which contain partially deprotonated forms of the ligand triethanolamine (teaH(3)). These compounds are [Mn(III)(4)Co(III)(2)Co(II)(2)O(2)(teaH(2))(2)(teaH)(0.82)(dea)(3.18)(O(2)CMe)(2)(OMe)(2)](BF(4))(2)(O(2)CMe)(2)·3.18MeOH·H(2)O (1), [Mn(II)(2)Mn(III)(2)Co(III)(2)(teaH)(4)(OMe)(2)(acac)(4)](NO(3))(2)·2MeOH (2), [Mn(III)(2)Ni(II)(4)(teaH)(4)(O(2)CMe)(6)]·2MeCN (3), [Mn(III)(2)Co(II)(2)(teaH)(2)(sal)(2)(acac)(2)(MeOH)(2)]·2MeOH (4), [Mn(II)(2)Fe(III)(2)(teaH)(2)(paa)(4)](NO(3))(2)·2MeOH·CH(2)Cl(2) (5), [Mn(II)Mn(III)(2)Co(III)(2)O(teaH)(2)(dea)(Iso)(OMe)(F)(2)(Phen)(2)](BF(4))(NO(3))·3MeOH (6) and [Mn(II)(2)Mn(III)Co(III)(2)(OH)(teaH)(3)(teaH(2))(acac)(3)](NO(3))(2)·3CH(2)Cl(2) (7). All of the compounds contain manganese, combined with 3d transition metal ions such as Fe, Co and Ni. The crystal structures are described and examples of 'rods', tetranuclear 'butterfly' and 'triangular' Mn(3) cluster motifs, flanked in some cases by diamagnetic cobalt(III) centres, are presented. Detailed DC and AC magnetic susceptibility and magnetization studies, combined with spin Hamiltonian analysis, have yielded J values and identified the spin ground states. In most cases, the energies of the low-lying excited states have also been obtained. The features of note include the 'inverse butterfly' spin arrangement in 2, 4 and 5. A S = 5/2 ground state occurs, for the first time, in the Mn(III)(2)Mn(II) triangular moiety within 6, the many other reported [Mn(3)O](6+) examples having S = ? or 3/2 ground states. Compound 7 provides the first example of a Mn(II)(2)Mn(III) triangle, here within a pentanuclear Mn(3)Co(2) cluster.  相似文献   

6.
Kou HZ  Zhou BC  Liao DZ  Wang RJ  Li Y 《Inorganic chemistry》2002,41(25):6887-6891
Two cyano-bridged Ni(II)-Fe(III) complexes [(H(3)O)[Ni(H(2)L)](2)[Fe(CN)(6)](2).[Fe(CN)(6)].6H(2)O](n) (1) and [K(18-C-6)(H(2)O)(2)][Ni(H(2)L)](2)[Fe(CN)(6)](3).4(18-C-6).20H(2)O (2) (L = 3,10-bis(2-aminoethyl)-1,3,6,8,10,12-hexaazacyclotetradecane, 18-C-6 = 18-crown-6-ether) have been synthesized and characterized structurally and magnetically. Complex 1 has a zigzag one-dimensional structure, in which two trans-CN(-) ligands of each [Fe(CN)(6)](3)(-) link two trans-[Ni(H(2)L)](4+) groups, and in turn, each trans-[Ni(H(2)L)](4+) links two [Fe(CN)(6)](3)(-) in a trans fashion. Complex 2 is composed of cyano-bridged pentanuclear molecules with moieties connected by the trans-CN(-) ligands of [Fe(CN)(6)](3)(-). Magnetic studies show the existence of ferromagnetic Ni(II)-Fe(III) interactions in both complexes. The intermetallic magnetic coupling constant of both complexes was analyzed by using an approximate model on the basis of the structural features.  相似文献   

7.
A convenient method for the preparation of barbiturate transition metal complexes: (i) Cr(3+), Mn(2+), Fe(3+), Zn(2+) and Cd(2+) ions with barbituric acid (H(2)L) and (ii) Cr(3+) and Mo(5+) with 2-thiobarbituric acid (H(2)L') was reported and this has enabled seven complexes to be formulated as: [Cr(HL)(2)(OH)(H(2)O)].H(2)O, [Mn(HL)(2)(H(2)O)(2)], [Fe(2)(L)(OH)(3)(H(2)O)(4)].2H(2)O, [Zn(HL)(2)], [Cd(HL)(2)], [Cr(HL')(OH)(2)(H(2)O)].H(2)O and [Mo(HL')(2)]Cl. These new barbiturate complexes were synthesized and characterized by elemental analysis, molar conductivity, magnetic measurements, spectral methods (mid infrared, (1)H NMR, mass, X-ray powder diffraction and UV/vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. The molar conductance measurements proved that, all complexes of barbituric and 2-thiobarbituric acids are non-electrolytes except for [Mo(HL')(2)]Cl. The electronic spectra and magnetic susceptibility measurements were used to infer the structures. The IR spectra of the ligands and their complexes are used to identify the mode of coordination. Kinetic and thermodynamic parameters such as: E, DeltaH, DeltaS and DeltaG are estimated according to the DTG curves. The two ligands and their complexes have been studied for their possible biological antifungal activity.  相似文献   

8.
The synthesis and magnetic properties of the compounds [HNEt(3)][Fe(2)(OMe)(Ph-sao)(2) (Ph-saoH)(2)].5MeOH (1.5MeOH), [Fe(3)O(Et-sao)(O(2)CPh)(5)(MeOH)(2)].3MeOH (2.3MeOH), [Fe(4)(Me-sao)(4)(Me-saoH)(4)] (3), [HNEt(3)](2)[Fe(6)O(2)(Me-sao)(4)(SO(4))(2)(OMe)(4)(MeOH)(2)] (4), [Fe(8)O(3)(Me-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (5), [Fe(8)O(3)(Et-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (6), and [Fe(8)O(3)(Ph-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (7) are reported (Me-saoH(2) is 2'-hydroxyacetophenone oxime, Et-saoH(2) is 2'-hydroxypropiophenone oxime and Ph-saoH(2) is 2-hydroxybenzophenone oxime). 1-7 are the first Fe(III) compounds synthesised using the derivatised salicylaldoxime ligands, R-saoH(2). 1 is prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Ph-saoH(2) in the presence of NEt(3) in MeOH; 2 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Et-saoH(2) and NaO(2)CPh in the presence of NEt(4)OH in MeOH; 3 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Me-saoH(2) and NaO(2)CCMe(3) in the presence of NEt(4)OH in MeOH; and 4 prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Me-saoH(2) in the presence of NEt(3) in MeOH. 4 is a rare example of a polynuclear iron complex containing a coordinated SO(4)(2-) ion. Compounds 5-7 are prepared by treatment of Fe(O(2)CMe)(2) with Me-saoH(2) (5), Et-saoH(2) (6), Ph-saoH(2) (7) in the presence of H(3)tea (triethanolamine) in MeOH, and represent the largest nuclearity Fe(III) clusters containing salicyladoxime-based ligands, joining a surprisingly small family of characterised octanuclear Fe complexes. Variable temperature magnetic susceptibilty measurements of 1, 3 and 5-7 reveal all five complexes possess S = 0 spin ground states; 2 possesses an S = 1/2 spin ground state, while 4 has an S = 4 +/- 1 spin ground state.  相似文献   

9.
Convenient, high-yield routes have been developed to [Fe 10(OMe) 20(O 2CR) 10] ( 1) "ferric wheels" involving the alcoholysis of [Fe 3O(O 2CR) 6(H 2O) 3] (+) salts in MeOH in the presence of NEt 3. Reactivity studies have established [Fe 10(OMe) 20(O 2CMe) 10] ( 1a) to undergo clean carboxylate substitution with a variety of other RCO 2H groups to the corresponding [Fe 10(OMe) 20(O 2CR) 10] product. In contrast, the reaction with phenol causes a nuclearity change to give a smaller [Fe 8(OH) 4(OPh) 8(O 2CR) 12] ( 2) wheel. Similarly, reactions of [Fe 10(OMe) 20(O 2CR) 10] with the bidentate chelate ethylenediamine (en) cause a structural change to give either [Fe 8O 5(O 2CMe) 8(en) 8](ClO 4) 6 ( 3) or [Fe 2O(O 2CBu (t))(en) 4](NO 3) 3 ( 4), depending on conditions. Complex 3 possesses a "Christmas-star" Fe 8 topology comprising a central planar [Fe 4(mu 4-O)] (10+) square subunit edge-fused to four oxide-centered [Fe 3(mu 3-O)] (7+) triangular units. Variable-temperature, solid-state dc and ac magnetization studies on complexes 1a- 4 in the 5.0-300 K range established that all the complexes possess an S = 0 ground state. The magnetic susceptibility data for 4 were fit to the theoretical chi M versus T expression derived by the use of an isotropic Heisenberg spin Hamiltonian and the Van Vleck equation, and this revealed an antiferromagnetic exchange parameter with a value of J = -107.7(5) cm (-1). This value is consistent with that predicted by a previously published magnetostructural relationship. Theoretically computed values of the exchange constants in 3 were obtained with the ZILSH method, and the pattern of spin frustration within its core and the origin of its S = 0 ground state have been analyzed in detail.  相似文献   

10.
A cationic, pentanuclear aluminium phosphonate cage, [L(4)Al(5)Cl(6)(THF)(6)]Cl, 1, supported by (phthalimidomethyl) phosphonate, (L), has been synthesized and characterized. This polynuclear cage features the phosphonate ligand in an unusual coordination mode, supporting five aluminium atoms in two different environments. In comparison, the aqueous reaction of LH(2) with In(ClO(4))(3) afforded [{(LH)In(H(2)O)}(H(2)O)(2)(ClO(4))](n), 2, an indium(iii) phosphonate coordination polymer, that has been crystallographically characterized. Reactions of the corresponding phosphonate ester, diethyl (phthalimidomethyl) phosphonate, (L'), with GaI(3) and InCl(3) afforded the simple coordination complexes, [L'·GaI(3)], 3, and [L'·InCl(3)(THF)], 4.  相似文献   

11.
A new family of tetranuclear Ni complexes [Ni(4)(ROH)(4)L(4)] (H(2)L = salicylidene-2-ethanolamine; R = Me (1) or Et (2)) has been synthesized and studied. Complexes 1 and 2 possess a [Ni(4)O(4)] core comprising a distorted cubane arrangement. Magnetic susceptibility and inelastic neutron scattering studies indicate a combination of ferromagnetic and antiferromagnetic pairwise exchange interactions between the four Ni(II) centers, resulting in an S = 4 spin ground state. Magnetization measurements reveal an easy-axis-type magnetic anisotropy with D approximately -0.93 cm(-)(1) for both complexes. Despite the large magnetic anisotropy, no slow relaxation of the magnetization is observed down to 40 mK. To determine the origin of the low-temperature magnetic behavior, the magnetic anisotropy of complex 1 was probed in detail using inelastic neutron scattering and frequency domain magnetic resonance spectroscopy. The spectroscopic studies confirm the easy-axis-type anisotropy and indicate strong transverse interactions. These lead to rapid quantum tunneling of the magnetization, explaining the unexpected absence of slow magnetization relaxation for complex 1.  相似文献   

12.
The reaction of anhydrous FeCl(3) with 1H-benzotriazole-1-methanol (Bta-CH(2)OH) in MeOH produces the pentanuclear complex [Fe(5)O(2)(OMe)(2)(Bta)(4)(BtaH)(MeOH)(5)Cl(5)], containing a distorted tetrahedron of four Fe ions centred on a fifth. The central Fe is antiferromagnetically coupled to the peripheral Fe ions resulting in an S= 15/2 spin ground state.  相似文献   

13.
Three-dimensional network structures of [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) composition have been formed and their magnetic properties characterized. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) have nu(CN) IR absorptions at 2138, 2116, and 2125 cm(-1) and have body-centered unit cells (a = 13.34, 13.30, and 13.10 A, respectively) with -M-Ctbd1;N-Ru=Ru-Ntbd1;C-M- linkages along all three Cartesian axes. [Ru(II/III)(2)(O(2)CMe)(4)](3)[Cr(III)(CN)(6)] magnetically orders as a ferrimagnet (T(c) = 33 K) and has an unusual constricted hysteresis loop.  相似文献   

14.
Titiš J  Boča R 《Inorganic chemistry》2011,50(22):11838-11845
The magnetostructural D correlation for hexacoordinated cobalt(II) complexes is outlined. The structural and magnetic properties of a series of mononuclear cobalt(II) complexes with the general formulas [Co(II)(L)(6)]X(2), [Co(II)(L)(2)X(2)], and [Co(II)(L)(2)(H(2)O)(2)(car)(2)] have been investigated where the coordination sphere is formed by nitrogen/oxygen-donor heterocycle (L), carboxylato (car), aqua, and chlorido ligands. The chromophores of these compounds involve {CoN(6)}, {CoO(6)}, {CoO(4)O'(2)}, {CoN(2)O(2)O'(2)}, and {CoN(2)O(2)Cl(2)}. All complexes were subjected to magnetochemical investigation down to 2 K (SQUID susceptibility and magnetization measurements). Most of the studied complexes show magnetic behavior typical for zero-field-splitting systems. The magnetism of the complex [Co(H(2)O)(6)](6-OHnic)(2) reflects the presence of the magnetic angular momentum in the ground-state crystal-field term. The obtained values of the magnetic anisotropy (D or δ) have been correlated with the structural distortion of the coordination polyhedron. This correlation can be understood with the help of crystal-field theory, where the magnetic anisotropy parameters are related to the splitting of the lowest crystal-field multiplets.  相似文献   

15.
We report here the synthesis and characterization of four dinuclear cyanide-bridged Fe(III)-Cu(II) complexes, based on a tetra- or a pentadentate bispidine ligand (L(1) or L(2), respectively; bispidines are 3,7-diazabiyclo[3.3.1]nonane derivatives) coordinated to the Cu(II) center, and a tridentate bipyridineamide (bpca) coordinated to the low-spin Fe(III) site, with cyanide groups completing the two coordination spheres, one of them bridging between the two metal ions. The four structurally characterized complexes [{Fe(bpca)(CN)(3)}{Cu(L(1)·H(2)O)}]BF(4), [{Fe(bpca)(CN)(3)}{Cu(L(2))}][Fe(bpca)(CN)(3)]·5H(2)O, [{Fe(bpca)(CN)(3)}{Cu(L(2)·MeOH)}]PF(6)·MeOH·H(2)O, and [{Fe(bpca)(CN)(3)}{Cu(L(2))}]PF(6)·2H(2)O belong to different structural isomers. The most important differences are structurally and electronically enforced (direction of the pseudo-Jahn-Teller mode) strong or weak interactions of the copper(II) center with the cyanide bridge. The related strength of the magnetic coupling of the two centers is analyzed with a combination of experimental magnetic, electron paramagnetic resonance (EPR), electronic spectroscopic data together with a ligand-field theory- and density functional theory (DFT)-based analysis.  相似文献   

16.
Monoperoxovanadium(V) complexes, [NH3(CH2)2NH3][VO(O2)(ox)(pic)].2H2O (1) and [NH3(CH2)2NH3][VO(O2)(ox)(pca)] (2) [NH3(CH2)2NH3 = ethane-1,2-diammonium(2+), ox=oxalate(2-), pic=pyridine-2-carboxylate(1-), pca=pyrazine-2-carboxylate(1-)], were synthesized and characterized by X-ray analysis, IR and Raman spectroscopies. The five equatorial positions of the pentagonal bipyramid around the vanadium atoms are occupied by the eta2-peroxo ligand, two oxygen atoms of the ox, and the nitrogen atom of the pic or pca ligands, respectively. The oxo ligand and the oxygen atom of pic or pca are in the axial positions. Networks of X-HO (X=C, N or O) hydrogen bonds, and pi-pi interactions between aromatic rings in and anion-pi interactions in , determine the molecular packings and build up the supramolecular architecture. Three stereochemical rules for occupation of the donor sites in two-heteroligand [VO(O2)(L1)(L2)] complexes (L1, L2 are bidentate neutral or differently charged anionic heteroligands providing an OO, NN or ON donor set) are discussed. and crystallize as racemic compounds. The 51V NMR spectra proved that the parent complex anions of and partially decompose on dissolution in water to the monoperoxo-ox, -pic or -pca complexes.  相似文献   

17.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

18.
The reaction between [Fe(III)(dmf)(6)](ClO(4))(3) and the ligand S-methyl-1-phenyl-isothiosemicarbazide, H(2)[L(Me)], and triethylamine (1:3:6) in methanol under an argon blanketing atmosphere at elevated temperatures (reflux) yields a purple solution from which upon cooling to 20 degrees C dark green crystals of [Fe(III)(L(Me)(*))(2)(SCH(3))] (1) were obtained in 15% yield. From a similar reaction mixture using FeCl(3) as starting material in the solvent acetone under anaerobic conditions at -80 degrees C, dark green crystals of [Fe(III)(L(Me)(*))(2)Cl] (2) were obtained in 21% yield. The structures of complexes 1 and 2 have been determined by single-crystal X-ray crystallography at 100 K. Both complexes are five-coordinate square base pyramidal ferric species containing two N,N-coordinated, monoanionic pi radicals, (L(Me)(*))(1)(-), of the parent S-methyl-1-phenyl-isothiosemicarbazide(2-) dianion in the basal positions whereas the axial position is occupied by methylthiolate in 1 and chloride in 2, respectively. The electronic structure of both species has been elucidated by their electronic spectra, magnetic properties, and X-band EPR and M?ssbauer spectra. Both possess an S(t) = (1)/(2) ground state which is attained via an antiferromagnetic coupling between the spins of an intermediate spin ferric ion (S(Fe) = (3)/(2)) and two ligand pi radical anions (S(rad) = (1)/(2)).  相似文献   

19.
The synthesis of novel bimetallic Cu(II) complexes with general stoichiometry [Cu(2)(H(2)L)X(2)(H(2)O)(2)], [Cu(2)(H(2)L)(CH(3)COO)(2)] and [Cu(2)(H(2)L)SO(4)(H(2)O)(2)] (where H(2)L=dideprotonated ligand and X=NO(3)(-) and Cl(-)) derived from tetradentate ligand obtained by the condensation of 1,4-diformyl piperazine with carbohydrazide has been discussed. The complexes were characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, mass, UV, EPR spectral studies and thermogravimetric analyses. The value of magnetic moments indicates that the complexes are paramagnetic and show the antiferromagnetic interaction between the two metal centres. The complexes possess the square planar coordination environment. The values of covalency measurements, i.e., in-plane sigma-bonding alpha(2), in-plane pi-bonding beta(2) and orbital reduction factor k indicate the covalent nature of complexes.  相似文献   

20.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号