首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The complex [Ru(tpy)(CO)(2)TFA]+[PF(6)]- (where tpy = 2,2':6',2' '-terpyridine and TFA = CF(3)CO(2)-) (1) has been synthesized and fully characterized spectroscopically. The X-ray structure of the complex has been determined. The photopysical properties of the ruthenium complex and the free ligand tpy have been investigated at room temperature and at 77 K in acetonitrile solution and in the solid state. Their electronic spectra are highly influenced by intermolecular stacking interactions, both in solution and in the solid state. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations have been performed to characterize the electronic structure and the excited states of [Ru(tpy)(CO)(2)TFA]+[PF(6)]- and tpy. TDDFT calculations on three different conformations of free ligand have been performed as well. Absorption and emission spectra of tpy have been studied at different temperatures and concentrations in order to have a better understanding of this ruthenium derivative's properties. The absorption spectrum of 1 is characterized by metal-perturbed ligand-centered (LC) bands in the UV region. No metal-to-ligand charge transfer (MLCT) bands are observed in the visible for the complex. Only at high concentrations (10(-4) M) does a very weak band appear at 470 nm. At 77 K and low concentrations, solutions of 1 exhibit a major 3LC emission band centered at 468 nm (21.4 x 10(-3) cm(-1)). When the concentration of the complex is increased, an unstructured narrow emission at 603 nm (16.6 x 10(-3) cm(-1)), with a lifetime of 10 micros, dominates the emission spectrum in glassy acetonitrile. This emission originates from a pi-pi stacked dimeric (or oligomeric) species. TDDFT calculations performed on a tail-to-tail dimer structure, similar to that seen in the solid state, ascribe the transition to a triplet excited state, where intermolecular metal (d) --> ligand (pi*, polypyridine) charge transfer occurs. A good estimate of the transition energy is also obtained (623 nm, 1.94 eV).  相似文献   

2.
The electronic absorption spectra, luminescence spectra and lifetimes (in MeCN at room temperature and in frozen n-C3H7CN at 77 K), and electrochemical potentials (in MeCN) of the novel dinuclear [(tpy)Ru(3)Os(tpy)]4+ and trinuclear [(tpy)Ru(3)Os(3)Ru(tpy)]6- complexes (3 = 2,5-bis(2,2':6',2'-terpyridin-4-yl)thiophene) have been obtained and are compared with those of model mononuclear complexes and homometallic [(tpy)Ru(3)Ru(tpy)]4+, [(tpy)Os(3)Os(tpy)]4+ and [(tpy)Ru(3)Ru(3)Ru(tpy)]6+ Complexes. The bridging ligand 3 is nearly planar in the complexes, as seen from a preliminary X-ray determination of [(tpy)Ru(3)Ru(tpy)][PF6]4, and confers a high degree of rigidity upon the polynuclear species. The trinuclear species are rod-shaped with a distance of about 3 nm between the terminal metal centres. For the polynuclear complexes, the spectroscopic and electrochemical data are in accord with a significant intermetal interaction. All of the complexes are luminescent (phi in the range 10(-4)-10(-2) and tau in the range 6-340 ns, at room temperature), and ruthenium- or osmium-based luminescence properties can be identified. Due to the excited state properties of the various components and to the geometric and electronic properties of the bridge, Ru --> Os directional transfer of excitation energy takes place in the complexes [(tpy)Ru(3)Os(tpy)]4+ (end-to-end) and [(tpy)Ru(3)Os(3)Ru(tpy)]6+ (periphery-to-centre). With respect to the homometallic case, for [(tpy)Ru(3)Os(3)Ru(tpy)]6+ excitation trapping at the central position is accompanied by a fivefold enhancement of luminescence intensity.  相似文献   

3.
The molecular and electronic structures of the four members, [Cr(tpy)(2)](PF(6))(n) (n = 3-0; complexes 1-4; tpy = 2,2':6',2″-terpyridine), of the electron transfer series [Cr(tpy)(2)](n+) have been determined experimentally by single-crystal X-ray crystallography, by their electro- and magnetochemistry, and by the following spectroscopies: electronic absorption, X-ray absorption (XAS), and electron paramagnetic resonance (EPR). The monoanion of this series, [Cr(tpy)(2)](1-), has been prepared in situ by reduction with KC(8) and its EPR spectrum recorded. The structures of 2, 3, 4, 5, and 6, where the latter two compounds are the Mo and W analogues of neutral 4, have been determined at 100(2) K. The optimized geometries of 1-6 have been obtained from density functional theoretical (DFT) calculations using the B3LYP functional. The XAS and low-energy region of the electronic spectra have also been calculated using time-dependent (TD)-DFT. A consistent picture of the electronic structures of these octahedral complexes has been established. All one-electron transfer processes on going from 1 to 4 are ligand-based: 1 is [Cr(III)(tpy(0))(2)](PF(6))(3) (S = (3)/(2)), 2 is [Cr(III)(tpy(?))(tpy(0))](PF(6))(2) (S = 1), 3 is [Cr(III)(tpy(?))(2)](PF(6)) (S = (1)/(2)), and 4 is [Cr(III)(tpy(??))(tpy(?))](0) (S = 0), where (tpy(0)) is the neutral parent ligand, (tpy(?))(1-) represents its one-electron-reduced π radical monoanion, (tpy(2-))(2-) or (tpy(??))(2-) is the corresponding singlet or triplet dianion, and (tpy(3-))(3-) (S = (1)/(2)) is the trianion. The electronic structure of 2 cannot be described as [Cr(II)(tpy(0))(2)](PF(6))(2) (a low-spin Cr(II) (d(4); S = 1) complex). The geometrical features (C-C and C-N bond lengths) of these coordinated ligands have been elucidated computationally in the following hypothetical species: [Zn(II)Cl(2)(tpy(0))](0) (S = 0) (A), [Zn(II)(tpy(?))Cl(NH(3))](0) (S = (1)/(2)) (B), [Zn(II)(tpy(2-))(NH(3))(2)](0) (S = 0 or 1) (C), and [Al(III)(tpy(3-))(NH(3))(3)](0) (S = (1)/(2) and (3)/(2)) (D). The remarkable electronic structure of the monoanion has been calculated and experimentally verified by EPR spectroscopy to be [Cr(III)(tpy(2-))(tpy(??))](1-) (S = (1)/(2)), a complex in which the two dianionic tpy ligands differ only in the spin state. It has been clearly established that coordinated tpy ligands are redox-active and can exist in at least four oxidation levels.  相似文献   

4.
A palladium-catalyzed Stille coupling reaction was employed as a versatile method for the synthesis of a novel terpyridine-pincer (3, TPBr) bridging ligand, 4'-{4-BrC6H2(CH2NMe2)2-3,5}-2,2':6',2' '-terpyridine. Mononuclear species [PdX(TP)] (X = Br, Cl), [Ru(TPBr)(tpy)](PF6)2, and [Ru(TPBr)2](PF6)2, synthesized by selective metalation of the NCNBr-pincer moiety or complexation of the terpyridine of the bifunctional ligand TPBr, were used as building blocks for the preparation of heterodi- and trimetallic complexes [Ru(TPPdCl)(tpy)](PF6)2 (7) and [Ru(TPPdCl)2](PF6)2 (8). The molecular structures in the solid state of [PdBr(TP)] (4a) and [Ru(TPBr)2](PF6)2 (6) have been determined by single-crystal X-ray analysis. Electrochemical behavior and photophysical properties of the mono- and heterometallic complexes are described. All the above di- and trimetallic Ru complexes exhibit absorption bands attributable to (1)MLCT (Ru --> tpy) transitions. For the heteroleptic complexes, the transitions involving the unsubstituted tpy ligand are at a lower energy than the tpy moiety of the TPBr ligand. The absorption bands observed in the electronic spectra for TPBr and [PdCl(TP)] have been assigned with the aid of TD-DFT calculations. All complexes display weak emission both at room temperature and in a butyronitrile glass at 77 K. The considerable red shift of the emission maxima relative to the signal of the reference compound [Ru(tpy)2]2+ indicates stabilization of the luminescent 3MLCT state. For the mono- and heterometallic complexes, electrochemical and spectroscopic studies (electronic absorption and emission spectra and luminescence lifetimes recorded at room temperature and 77 K in nitrile solvents), together with the information gained from IR spectroelectrochemical studies of the dimetallic complex [Ru(TPPdSCN)(tpy)](PF6)2, are indicative of charge redistribution through the bridging ligand TPBr. The results are in line with a weak coupling between the {Ru(tpy)2} chromophoric unit and the (non)metalated NCN-pincer moiety.  相似文献   

5.
The dinuclear complex [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 (bridging PCP-PCP = 3,3',5,5'-tetrakis(diphenylphosphinomethyl)biphenyl, [C6H2(CH2PPh2)2-3,5]22-) was prepared via a transcyclometalation reaction of the bis-pincer ligand [PC(H)P-PC(H)P] and the Ru(II) precursor [Ru(NCN)(tpy)]Cl (NCN = [C6H3(CH2NMe2)2-2,6]-) followed by a reaction with 2,2':6',2' '-terpyridine (tpy). Electrochemical and spectroscopic properties of [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 are compared with those of the closely related [(tpy)RuII(NCN-NCN)RuII(tpy)](PF6)2 (NCN-NCN = [C6H2(CH2NMe2)2-3,5]22-) obtained by two-electron reduction of [(tpy)RuIII(NCN-NCN)RuIII(tpy)](PF6)4. The molecular structure of the latter complex has been determined by single-crystal X-ray structure determination. One-electron reduction of [(tpy)RuIII(NCN-NCN)RuIII(tpy)](PF6)4 and one-electron oxidation of [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 yielded the mixed-valence species [(tpy)RuIII(NCN-NCN)RuII(tpy)]3+ and [(tpy)RuIII(PCP-PCP)RuII(tpy)]3+, respectively. The comproportionation equilibrium constants Kc (900 and 748 for [(tpy)RuIII(NCN-NCN)RuIII(tpy)]4+ and [(tpy)RuII(PCP-PCP)RuII(tpy)]2+, respectively) determined from cyclic voltammetric data reveal comparable stability of the [RuIII-RuII] state of both complexes. Spectroelectrochemical measurements and near-infrared (NIR) spectroscopy were employed to further characterize the different redox states with special focus on the mixed-valence species and their NIR bands. Analysis of these bands in the framework of Hush theory indicates that the mixed-valence complexes [(tpy)RuIII(PCP-PCP)RuII(tpy)]3+ and [(tpy)RuIII(NCN-NCN)RuII(tpy)]3+ belong to strongly coupled borderline Class II/Class III and intrinsically coupled Class III systems, respectively. Preliminary DFT calculations suggest that extensive delocalization of the spin density over the metal centers and the bridging ligand exists. TD-DFT calculations then suggested a substantial MLCT character of the NIR electronic transitions. The results obtained in this study point to a decreased metal-metal electronic interaction accommodated by the double-cyclometalated bis-pincer bridge when strong sigma-donor NMe2 groups are replaced by weak sigma-donor, pi-acceptor PPh2 groups.  相似文献   

6.
A comprehensive photophysical study is presented which compares the ground- and excited-state properties of four platinum(II) terpyridyl acetylide compounds of the general formula [Pt(tBu3tpy)(CCR)]+, where tBu3tpy is 4,4',4' '-tri-tert-butyl-2,2':6',2' '-terpyridine and R is an alkyl or aryl group. [Ru(tBu3tpy)3]2+ and the pivotal synthetic precursor [Pt(tBu3tpy)Cl]+ were also investigated in the current work. The latter two complexes possess short excited-state lifetimes and were investigated using ultrafast spectrometry while the other four compounds were evaluated using conventional nanosecond transient-absorption spectroscopy. The original intention of this study was to comprehend the nature of the impressive excited-state absorptions that emanate from this class of transition-metal chromophores. Transient-absorbance-difference spectra across the series contain the same salient features, which are modulated only slightly in wavelength and markedly in intensity as a function of the appended acetylide ligand. More intense absorption transients are observed in the arylacetylide structures relative to those bearing an alkylacetylide, consistent with transitions coupled to the pi system of the ancillary ligand. Reductive spectroelectrochemical measurements successfully generated the electronic spectrum of the tBu3tpy radical anion in all six complexes at room temperature. These measurements confirm that electronic absorptions associated with the tBu3tpy radical anion simply do not account for the intense optical transitions observed in the excited state of the Pt(II) chromophores. Transient-trapping experiments using the spectroscopically silent reductive quencher DABCO clearly demonstrate the loss of most transient-absorption features in the acetylide complexes throughout the UV, visible, and near-IR regions following bimolecular excited-state electron transfer, suggesting that these features are strongly tied to the photogenerated hole which is delocalized across the Pt center and the ancillary acetylide ligand.  相似文献   

7.
Wang L  Yang WW  Zheng RH  Shi Q  Zhong YW  Yao J 《Inorganic chemistry》2011,50(15):7074-7079
A new bridging ligand 1,3,6,8-tetrakis(1-butyl-1H-1,2,3-triazol-4-yl)pyrene (ttapyr) was designed and synthesized by "click" chemistry. This ligand was used to construct a linear dimetallic biscyclometalated Ru(II) complex [(tpy)Ru(ttapyr)Ru(tpy)](2+) and a monometallic complex [(tpy)Ru(ttapyr)](+), where tpy is 2,2':6',2″-terpyridine. The electronic properties of these complexes were studied and compared by electrochemical and spectroscopic methods with the aid of DFT calculations. One-electron oxidation of [(tpy)Ru(ttapyr)Ru(tpy)](2+) with cerium ammonium nitrate produced a mixed-valent complex [(tpy)Ru(ttapyr)Ru(tpy)](3+). The intramolecular electronic coupling between individual metal centers was quantified by the intervalence charge transfer transition analysis. Mixed-valent complex [(tpy)Ru(ttapyr)Ru(tpy)](3+) exhibits a metal-centered rhombic EPR signal at 77 K with an average g factor of 2.203.  相似文献   

8.
Two ruthenium atoms are covalently connected to the para positions of a phenyl ring in 1,2,4,5-tetra(2-pyridyl)benzene (tpb) to form a linear Ru-tpb-Ru arrangement. This unique structure leads to appealing electronic properties for the biscyclometalated complex [(tpy)Ru(tpb)Ru(tpy)](2+), where tpy is 2,2';6',2″-terpyridine. It could be stepwise oxidized at substantially low potential (+0.12 and +0.55 V vs Ag/AgCl) and with a noticeably large comproportionation constant (1.94 × 10(7)). In addition to the routinely observed metal-to-ligand charge-transfer transitions, [(tpy)Ru(tpb)Ru(tpy)](2+) displays a separate and distinct absorption band at 805 nm with appreciable absorptivity (ε = 9000 M(-1) cm(-1)). This band is assigned to the charge transition from the Ru-tpb-Ru motif to the pyridine rings of tpb with the aide of density functional theory (DFT) and time-dependent DFT calculations. Complex [(tpy)Ru(tpb)Ru(tpy)](2+) was precisely titrated with 1 equiv of cerium ammonium nitrate to produce [(tpy)Ru(tpb)Ru(tpy)](3+), which shows intense multiple NIR transitions. The electronic coupling parameters H(ab) of individual NIR components are determined to be 5812, 4942, 4358, and 3560 cm(-1). DFT and TDDFT calculation were performed on [(tpy)Ru(tpb)Ru(tpy)](3+) to elucidate its electronic structure and spin density population and the nature of the observed NIR transitions. Electron paramagnetic resonance studies of [(tpy)Ru(tpb)Ru(tpy)](3+) exhibit a discernible rhombic signal with the isotropic g factor of ?g? = 2.144. These results point to the strong orbital interaction of tpb with metal centers and that tpb behaves as a redox noninnocent bridging ligand in [(tpy)Ru(tpb)Ru(tpy)](2+). Complex [(tpy)Ru(tpb)Ru(tpy)](3+) is determined to be a Robin-Day class III system with full charge delocalization across the Ru-tpb-Ru motif.  相似文献   

9.
Three new terpyridine-based dinuclear complexes, [(tpy)Ru(azotpy)Ru(tpy)]4+ (tpy = 2,2':6',2'-terpyridine, azotpy = bis[2,6-bis(2-pyridyl)-4-pyridyl]diazene), [(tpy)Os(azotpy)Os(tpy)]4+, and [(tpy)Ru(azotpy)Os(tpy)]4+ were prepared and their electrochemical and photophysical properties investigated. The bridging ligand, azotpy, in these complexes is reduced at less negative potentials than the unsubstituted tpy ligand. These complexes exhibit absorption bands due to the metal-to-ligand charge-transfer transitions both to the unsubstituted tpy ligand and the bridging azotpy ligand, the latter absorption being observed at the lower energy side of the former. These observations are consistent with the lower lying pi* level of the azotpy ligand than that of the tpy ligand. These complexes are nonluminescent, since the excited electron is trapped in this lower lying pi* level of the azotpy ligand in the excited state. Reduction of this bridging ligand by constant potential electrolysis renders the shape of absorption spectra for these complexes nearly identical to those of the parent complexes, [M(tpy)2]2+ (M = Ru, Os). In this reduced state, the homodinuclear Os complex becomes luminescent at room temperature, whereas the homodinuclear Ru complex becomes luminescent at 77 K, thus establishing their photoswitching behavior. The reduced heterodinuclear complex exhibits luminescence from the Os center, which is sensitized by the Ru center in the same molecule as evidenced by the excitation spectra. Thus, the intramolecular energy transfer can be switched on and off by the redox reaction of the bridging component.  相似文献   

10.
The compound [Ni(PPh(3))(3)][BF(4)] x BF(3) x OEt(2) was isolated in crystalline form from the olefin oligomerization catalyst system Ni(PPh(3))(4)/BF(3) x OEt(2) and structurally characterized by X-ray diffraction. The influence of vibronic coupling on the EPR parameters of three-coordinate metal complexes with a 3d(9) electronic configuration was investigated within the framework of ligand field theory. Analytical expressions for g-tensor components and isotropic hyperfine coupling constants with ligand nuclei were obtained using first-order perturbation theory. It has been shown that the account of the vibronic interaction in the excited state predicts the existence of three-axial anisotropy of the g-tensor even at the level of first-order perturbation theory; two axes of the g-tensor located in a plane of three-coordinate structure can rotate about the main z axis when a compound is distorted by motion of ligands. It has been shown that in three points of the potential energy surface minimum, for which linear and quadric constants of the vibronic interactions have an identical signs, the HFS isotropic constant from one ligand is larger than HFS constants from the other two; for different vibronic constant signs the ratio between HFS constants varies on opposite. This theoretical researches are in the quality consent with experimental data for a three-coordinate Ni(I) and Cu(II) flat complexes.  相似文献   

11.
The resonance Raman scattering spectra of uranyl formate (UO(2)(HCOO)(2)) in dimethyl sulfoxide ((CH(3))(2)SO, DMSO) have been measured under laser excitation of the uranyl ion in resonance with the 1Sigma(g)(+)-->(1)Phi(g) Laport forbidden f-f electronic transitions (ranging from 510 to 450 nm) by using ten output lines with wavelength ranging from 528.7 to 454.5 nm of the argon-ion laser at room temperature. The observed resonance excitation profile resembles the vibronic structure of the electronic absorption spectrum (ABS) but does not completely superimpose on it. Such a discrepancy is quantitatively explained by the interference effect, which occurs noticeably in the UO(2)L(2) (L=NO(3), CH(3)COO, Cl or HCOO)-DMSO system. Transform theory that makes use of the electronic ABS of the resonant electronic state has been applied to predict the Raman excitation profile (REP) of the uranyl totally symmetric stretching vibrational mode. Comparing the experimental REP with the transform theory prediction, it is found that the resonance Raman intensities of this stretching mode depend mainly on the vibronic interaction (non-Condon effect) in excited electronic states. Reliable value of the nuclear displacement on going the 1Sigma(g)(+)-->(1)Phi(g) electronic transition and the amount of charge transferred from the ligand to uranium of uranyl ion both in the ground and excited states are obtained. Elongation of the U-O equilibrium bond length due to the electronic transition is related to the magnitude of the change in the excitation profile, and has linear relation to the change in the amount of charge transferred from the ligand to uranium of uranyl ion in UO(2)L(2) type uranyl compounds in DMSO.  相似文献   

12.
The electronic and vibronic interactions of uranyl (UO(2))(2+) in three tetrachloride crystals have been investigated with spectroscopic experiments and theoretical modeling. Analysis and simulation of the absorption and photoluminescence spectra have resulted in a quantitative understanding of the charge transfer vibronic transitions of uranyl in the crystals. The spectra obtained at liquid helium temperature consist of extremely narrow zero-phonon lines (ZPL) and vibronic bands. The observed ZPLs are assigned to the first group of the excited states formed by electronic excitation from the 3σ ground state into the f(δ,?) orbitals of uranyl. The Huang-Rhys theory of vibronic coupling is modified successfully for simulating both the absorption and luminescence spectra. It is shown that only vibronic coupling to the axially symmetric stretching mode is Franck-Condon allowed, whereas other modes are involved through coupling with the symmetric stretching mode. The energies of electronic transitions, vibration frequencies of various local modes, and changes in the O═U═O bond length of uranyl in different electronic states and in different coordination geometries are evaluated in empirical simulations of the optical spectra. Multiple uranyl sites derived from the resolution of a superlattice at low temperature are resolved by crystallographic characterization and time- and energy-resolved spectroscopic studies. The present empirical simulation provides insights into fundamental understanding of uranyl electronic interactions and is useful for quantitative characterization of uranyl coordination.  相似文献   

13.
Both the 77 K single crystal absorption and 20 K emission spectrum of (&mgr;-1,1-dicyanoethylene-2,2-dithiolato-S,S')bis(triphenylphosphine)digold(I), (AuPPh(3))(2)[i-MNT], show resolved vibronic structure. Progressions in the 1410 cm(-)(1) C=C stretching mode of the dithiolate ligand, and in the 480 cm(-)(1) mode, which involves gold-dithiolate stretching, are observed in the emission spectrum. The resonance Raman spectra of the title compound and related compounds were used to identify the modes that give rise to the vibronic structure observed in the emission spectrum. The emission spectrum is fit using the time dependent theory of electronic spectroscopy. The theoretical fit to the spectrum requires distortions in vibrations involving both the metal-sulfur and dithiolate centered modes. These distortions show that the transition is a charge transfer involving the gold and the dithiolate ligand. The emission spectrum of an analogous complex, (AuAsPh(3))(2)[i-MNT], is red shifted relative to the title complex. This red shift allows the direction of the charge transfer emission in the title complex to be assigned as a dithiolate to gold, ligand to metal charge transfer.  相似文献   

14.
Luminescence and excitation of luminescence vibronic spectra of europium nitrates Eu(NO3)3 x 4SOR2 containing sulphoxide derivatives were obtained and analysed. Some factors influencing the intensity distribution in vibronic sidebands are discussed. Significant variation of the intensity distribution in antiStokes sidebands of Eu3+ electronic transitions in series of nitrates results from the difference in effective charges on coordinated oxygen atoms of ligands. Another important detail of the vibronic spectra is a redistribution of intensity in the region of 5D0, 5D1-->7F2 transitions of luminescence spectra originated in overlap of different vibronic transitions. Mixing between the 7F2 electronic state of Eu3+ and vibronic satellites of 7F0 electronic state was studied both under conditions of resonance and in case of significant detuning.  相似文献   

15.
The mixed-ligand complexes [Co(III)(tpy)(Cat-N-SQ)]Y and [Ni(II)(tpy)(Cat-N-BQ)]PF(6) (tpy = 2,2':6',2' '-terpyridine; Cat-N-BQ, Cat-N-SQ = mononegative and radical dinegative Schiff base diquinone ligand; Y = PF(6), BPh(4)) were prepared. Structural and spectroscopic data support the different charge distribution of the two compounds. The temperature-dependent electronic and spectral properties of solutions containing the [Co(III)(tpy)(Cat-N-SQ)](+) suggest that this compound undergoes a thermally driven valence tautomeric interconversion to [Co(II)(tpy)(Cat-N-BQ)](+) complex, the metal ion being in high-spin configuration. The comparison of the electrochemical properties of the cobalt and nickel derivatives supports the observed behavior. The same interconversion process was found to occur also in the solid state with a significant higher T(c) value than in solution. It was found that the previously reported [Co(III)(Cat-N-BQ)(Cat-N-SQ)] shows a similar behavior. The large difference between the interconversion T(c) in the solid state and in solution is suggested to come from the entropy changes associated with the modifications of vibronic interactions.  相似文献   

16.
We report here the laser induced fluorescence excitation (FE) and dispersed fluorescence (DF) spectra of a 1:1 mixed dimer between 7-azaindole (7AI) and 2-pyridone (2PY) measured in a supersonic free jet expansion of helium. Density functional theoretical calculation at the B3LYP/6-311++G** level has been performed for predictions of the dimer geometry and normal mode vibrational frequencies in the ground electronic state. A planar doubly hydrogen-bonded structure has been predicted to be the most preferred geometry of the dimer. In the FE spectrum, sharp vibronic bands are observed only for excitation of the 2PY moiety. A large number of low-frequency vibronic bands show up in both the FE and DF spectra, and those bands have been assigned to in-plane hydrogen bond vibrations of the dimer. Spectral analyses reveal Duschinsky-type mixing among those modes in the excited state. No distinct vibronic band structure in the FE spectrum was observed corresponding to excitations of the 7AI moiety, and the observation has been explained in terms of nonradiative electronic relaxation routes involving the 2PY moiety.  相似文献   

17.
Photoinduced Rydberg ionization (PIRI) spectra of the second excited electronic state of benzonitrile cation were recorded via the origin and 6a1 and 6b1 vibrational levels of the cation ground electronic state. This B<--X transition was verified to be a forbidden 2B2<--2B1 transition with an origin at 17,225 cm-1 above the ground ionic state. By the use of vibronic coupling calculations, as well as symmetry analysis and comparison of the PIRI spectra via different ground vibrational levels, a nearly complete assignment of the vibrational structure was made, and the vibrational frequencies of the B 2B2 state of benzonitrile cation were obtained based on the assignments. Comparisons of the experimental spectra with simulations from the vibronic structure calculations are also used to validate the theoretical procedures used in the simulations.  相似文献   

18.
19.
The sensitivity of vibronic calculations to electronic structure methods and basis sets is explored and compared to accurate relative intensities of the vibrational bands of phenylacetylene in the S(1)(A(1)B(2)) ← S(0)(X(1)A(1)) transition. To provide a better measure of vibrational band intensities, the spectrum was recorded by cavity ringdown absorption spectroscopy up to energies of 2000 cm(-1) above the band origin in a slit jet sample. The sample rotational temperature was estimated to be about 30 K, but the vibrational temperature was higher, permitting the assignment of many vibrational hot bands. The vibronic structure of the electronic transition was simulated using a combination of time-dependent density functional theory (TD-DFT) electronic structure codes, Franck-Condon integral calculations, and a second-order vibronic model developed previously [Johnson, P. M.; Xu, H. F.; Sears, T. J. J. Chem. Phys. 2006, 125, 164331]. The density functional theory (DFT) functionals B3LYP, CAM-B3LYP, and LC-BLYP were explored. The long-range-corrected functionals, CAM-B3LYP and LC-BLYP, produced better values for the equilibrium geometry transition moment, but overemphasized the vibronic coupling for some normal modes, while B3LYP provided better-balanced vibronic coupling but a poor equilibrium transition moment. Enlarging the basis set made very little difference. The cavity ringdown measurements show that earlier intensities derived from resonance-enhanced multiphoton ionization (REMPI) spectra have relative intensity errors.  相似文献   

20.
The synthesis, photophysics, electronic structure, and electrochemical characterization of 4'-tert-butylacetylene-2,2':6',2'-terpyridineplatinum(II) chloride (1), 4'-phenylacetylene-2,2':6',2'-terpyridineplatinum(II) chloride (2), and their Zn(II) analogs are described. The Pt(II) complexes display interesting photophysical properties, showing vibronically resolved emission spectra at room temperature in CH(2)Cl(2), resembling a ligand localized emission profile. The photophysics and (1)O2 sensitization experiments support a triplet state assignment for these emissions which are best described as an admixture of charge transfer and ligand localized components, which decay symmetrically with time as evidenced by time resolved emission spectra. Room temperature ligand-localized fluorescence emission is observed from the zinc complexes whereas phosphorescence emission from the (3)pi-pi* manifold was obtained at 77 K in 4 : 1 EtOH/MeOH matrices doped with 10% ethyliodide. Compounds 1 and 2 display long-lived emission at room temperature, the latter possessing a longer lifetime, higher quantum yield, and longer wavelength emission. Lowering the temperature from 298 K to 77 K induces an increase in the excited state lifetime of both platinum systems together with a blue shift in their respective emission maxima, concomitant with more pronounced vibronic structure. The data are consistent with configurationally mixed triplet excited states at room temperature which persists in 77 K glasses. The corresponding Zn(II) complexes display significantly higher energy ligand-localized phosphorescence at 77 K. This latter result suggests that the nature of the metal and/or coordination environment imparts a significant electronic pertubation into the ligand-localized triplet states of these conjugated terpyridyl structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号