首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MALDI in-source decay (ISD) has been used for top-down sequencing of proteins. The use of the matrix 1,5-diaminonapthalene (1,5-DAN) gave abundant w ions, which are formed from the unimolecular dissociation of z? radical fragments via α cleavage reaction and thus help identify which of the isobaric amino acids, Leu or Ile, is present. The high abundance of w ions in MALDI-ISD with 1,5-DAN results from the low collision rate in the MALDI plume. MALDI-ISD with 1,5-DAN appears to be an useful method for the top-down sequencing of proteins, including discrimination of Leu and Ile near the C-terminal end.   相似文献   

2.
Collision-induced dissociation (CID) of ions by resonance activation in a quadrupole ion trap is usually accomplished by resonance exciting the ions to higher kinetic energy, whereby the high kinetic energy ions collide with a bath gas, such as helium or argon, inside the trap and dissociate to fragments. A new ion activation method using a well-defined rectangular wave dipolar potential formed by dividing down the trapping rectangular waveform is developed and examined herein. The mass-selected parent ions are resonance excited to high kinetic energies by simply changing the frequency of the rectangular wave dipolar potential and dissociation proceeds. A relationship between the ion mass and the activation waveform frequency is also identified and described. This highly efficient (CID) procedure can be realized by simply changing the waveform frequency of the dipolar potential, which could certainly simplify tandem mass spectrometry analysis methods.
Figure
?  相似文献   

3.
Sequence scrambling from y-type fragment ions has not been previously reported. In a study designed to probe structural variations among b-type fragment ions, it was noted that y fragment ions might also yield sequence-scrambled ions. In this study, we examined the possibility and extent of sequence-scrambled fragment ion generation from collision-induced dissociation (CID) of y-type ions from four peptides (all containing basic residues near the C-terminus) including: AAAAHAA-NH2 (where “A” denotes carbon thirteen (13C1) isotope on the alanine carbonyl group), des-acetylated-α-melanocyte (SYSMEHFRWGKPV-NH2), angiotensin II antipeptide (EGVYVHPV), and glu-fibrinopeptide b (EGVNDNEEGFFSAR). We investigated fragmentation patterns of 32 y-type fragment ions, including y fragment ions with different charge states (+1 to +3) and sizes (3 to 12 amino acids). Sequence-scrambled fragment ions were observed from ~50 % (16 out of 32) of the studied y-type ions. However, observed sequence-scrambled ions had low relative intensities from ~0.1 % to a maximum of ~12 %. We present and discuss potential mechanisms for generation of sequence-scrambled fragment ions. To the best of our knowledge, results on y fragment dissociation presented here provide the first experimental evidence for generation of sequence-scrambled fragments from CID of y ions through intermediate cyclic “b-type” ions.
Figure
?  相似文献   

4.
Collision-induced dissociation (CID) spectra of long non-tryptic peptides are usually quite complicated and rather difficult to interpret. Disulfide bond formed by two cysteine residues at C-terminus of frog skin peptides precludes one to determine sequence inside the forming loop. Thereby, chemical modification of S–S bonds is often used in “bottom up” sequencing approach. However, low-energy CID spectra of natural non-tryptic peptides with C-terminal disulfide cycle demonstrate an unusual fragmentation route, which may be used to elucidate the “hidden” C-terminal sequence. Low charge state protonated molecules experience peptide bond cleavage at the N-terminus of C-terminal cysteine. The forming isomeric acyclic ions serve as precursors for a series of b-type ions revealing sequence inside former disulfide cycle. The reaction is preferable for peptides with basic lysine residues inside the cycle. It may also be activated by acidic protons of Asp and Glu residues neighboring the loop. The observed cleavages may be quite competitive, revealing the sequence inside disulfide cycle, although S–S bond rupture does not occur in this case.
Figure
?  相似文献   

5.
An ion mobility/time-of-flight mass spectrometer (IMS/TOF MS) platform that allows for resonant excitation collision induced dissociation (CID) is presented. Highly efficient, mass-resolved fragmentation without additional excitation of product ions was accomplished and over-fragmentation common in beam-type CID experiments was alleviated. A quadrupole ion guide was modified to apply a dipolar AC signal across a pair of rods for resonant excitation. The method was characterized with singly protonated methionine enkephalin and triply protonated peptide angiotensin I, yielding maximum CID efficiencies of 44 % and 84 %, respectively. The Mathieu qx,y parameter was set at 0.707 for these experiments to maximize pseudopotential well depths and CID efficiencies. Resonant excitation CID was compared with beam-type CID for the peptide mixture. The ability to apply resonant waveforms in mobility-resolved windows is demonstrated with a peptide mixture yielding fragmentation over a range of mass-to-charge (m/z) ratios within a single IMS-MS analysis.
Figure
?  相似文献   

6.
A one-step enzymatic reaction for improving the collision-induced dissociation (CID)-based tandem mass spectrometry (MS/MS) analysis of phosphorylated peptides in an ion trap is presented. Carboxypeptidase-B (CBP-B) was used to selectively remove C-terminal arginine or lysine residues from phosphorylated tryptic/Lys-C peptides prior to their MS/MS analysis by CID with a Paul-type ion trap. Removal of this basic C-terminal residue served to limit the extent of gas-phase neutral loss of phosphoric acid (H3PO4), favoring the formation of diagnostic b and y ions as determined by an increase in both the number and relative intensities of the sequence-specific product ions. Such differential fragmentation is particularly valuable when the H3PO4 elimination is so predominant that localizing the phosphorylation site on the peptide sequence is hindered. Improvement in the quality of tandem mass spectral data generated by CID upon CBP-B treatment resulted in greater confidence both in assignment of the phosphopeptide primary sequence and for pinpointing the site of phosphorylation. Higher Mascot ion scores were also generated, combined with lower expectation values and higher delta scores for improved confidence in site assignment; Ascore values also improved. These results are rationalized in accordance with the accepted mechanisms for the elimination of H3PO4 upon low energy CID and insights into the factors dictating the observed dissociation pathways are presented. We anticipate this approach will be of utility in the MS analysis of phosphorylated peptides, especially when alternative electron-driven fragmentation techniques are not available.
Figure
?  相似文献   

7.
The gas-phase structures of protein ions have been studied by electron transfer dissociation (ETD) and collision-induced dissociation (CID) after electrospraying these proteins from native-like solutions into a quadrupole ion trap mass spectrometer. Because ETD can break covalent bonds while minimally disrupting noncovalent interactions, we have investigated the ability of this dissociation technique together with CID to probe the sites of electrostatic interactions in gas-phase protein ions. By comparing spectra from ETD with spectra from ETD followed by CID, we find that several proteins, including ubiquitin, CRABP I, azurin, and β-2-microglobulin, appear to maintain many of the salt bridge contacts known to exist in solution. To support this conclusion, we also performed calculations to consider all possible salt bridge patterns for each protein, and we find that the native salt bridge pattern explains the experimental ETD data better than nearly all other possible salt bridge patterns. Overall, our data suggest that ETD and ETD/CID of native protein ions can provide some insight into approximate location of salt bridges in the gas phase.
Figure
?  相似文献   

8.
Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MSn, n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides 18O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS3 CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MSn CID (n = 3 – 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.
Figure
?  相似文献   

9.
A systematic approach is described that can pinpoint the stereo-structures (sugar identity, anomeric configuration, and location) of individual sugar units within linear oligosaccharides. Using a highly modified mass spectrometer, dissociation of linear oligosaccharides in the gas phase was optimized along multiple-stage tandem dissociation pathways (MSn, n = 4 or 5). The instrument was a hybrid triple quadrupole/linear ion trap mass spectrometer capable of high-efficiency bidirectional ion transfer between quadrupole arrays. Different types of collision-induced dissociation (CID), either on-resonance ion trap or beam-type CID could be utilized at any given stage of dissociation, enabling either glycosidic bond cleavages or cross-ring cleavages to be maximized when wanted. The approach first involves optimizing the isolation of disaccharide units as an ordered set of overlapping substructures via glycosidic bond cleavages during early stages of MSn, with explicit intent to minimize cross-ring cleavages. Subsequently, cross-ring cleavages were optimized for individual disaccharides to yield key diagnostic product ions (m/z 221). Finally, fingerprint patterns that establish stereochemistry and anomeric configuration were obtained from the diagnostic ions via CID. Model linear oligosaccharides were derivatized at the reducing end, allowing overlapping ladders of disaccharides to be isolated from MSn. High confidence stereo-structural determination was achieved by matching MSn CID of the diagnostic ions to synthetic standards via a spectral matching algorithm. Using this MSn (n = 4 or 5) approach, the stereo-structures, anomeric configurations, and locations of three individual sugar units within two pentasaccharides were successfully determined.
Fig. a
?  相似文献   

10.
Glycopeptide structural analysis using tandem mass spectrometry is becoming a common approach for elucidating site-specific N-glycosylation. The analysis is generally performed in positive-ion mode. Therefore, fragmentation of protonated glycopeptides has been extensively investigated; however, few studies are available on deprotonated glycopeptides, despite the usefulness of negative-ion mode analysis in detecting glycopeptide signals. Here, large sets of glycopeptides derived from well-characterized glycoproteins were investigated to understand the fragmentation behavior of deprotonated N-linked glycopeptides under low-energy collision-induced dissociation (CID) conditions. The fragment ion species were found to be significantly variable depending on their amino acid sequence and could be classified into three types: (i) glycan fragment ions, (ii) glycan-lost fragment ions and their secondary cleavage products, and (iii) fragment ions with intact glycan moiety. The CID spectra of glycopeptides having a short peptide sequence were dominated by type (i) glycan fragments (e.g., 2,4AR, 2,4AR-1, D, and E ions). These fragments define detailed structural features of the glycan moiety such as branching. For glycopeptides with medium or long peptide sequences, the major fragments were type (ii) ions (e.g., [peptide + 0,2X0–H] and [peptide–NH3–H]). The appearance of type (iii) ions strongly depended on the peptide sequence, and especially on the presence of Asp, Asn, and Glu. When a glycosylated Asn is located on the C-terminus, an interesting fragment having an Asn residue with intact glycan moiety, [glycan + Asn–36], was abundantly formed. Observed fragments are reasonably explained by a combination of existing fragmentation rules suggested for N-glycans and peptides.
Figure
?  相似文献   

11.
Four aglycons (tomatidine, demissidine, solanidine, and solasodine) and three glycoalkaloids (α-tomatine, α-chaconine, and α-solanine) have been analyzed by positive ion liquid secondary ion high-energy and low-energy collision-induced dissociation (CID) tandem mass Spectrometry, performed on a four-sector (EBEB) and a hybrid (EBQQ) instrument, respectively. Both high- and low-energy collision-induced dissociation mass spectra of [M+H]+ ions of these compounds provided structural information that aided the characterization of the different aglycons and of the carbohydrate sequence and linkage sites in the glycoalkaloids. Low-energy CID favors charge-driven fragmentation of the aglycon rings, whilst high-energy CID spectra are more complex and contain additional ions that appear to result from charge-remote fragmentations, multiple cleavages, or complex charge-driven rearrangements. With respect to the structural characterization of the carbohydrate part, low-energy CID fragmentations of sugar residues in the glycoalkaloids generate Y n + ions and some low intensity Z n + ions; the high-energy spectra also exhibit strong 1,5X n + ions, formed by multiple cleavage of the sugar ring, and significant Z n + ions.  相似文献   

12.
The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M?+?H?+?O]+), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M?+?H?+?O]+ product is observed at a much greater abundance than the proton transfer product (viz., [M?+?H]+). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to ‘label’ methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.
Figure
?  相似文献   

13.
Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein–ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric “oxidized” peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.
Figure
?  相似文献   

14.
Collision-induced dissociation (CID) of protonated N-benzylindoline and its derivatives was investigated by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Elimination of benzene was observed besides hydride transfer and electron transfer reactions. D-labeling experiments and accurate mass determinations of the product ions confirm that the external proton is retained in the fragment ion, and the elimination reaction was proposed to be initiated by benzyl cation transfer rather than proton transfer. Benzyl cation transfer from the nitrogen atom to one of the sp2-hybridized carbon atoms in the indoline core is the key step, and subsequent proton transfer reaction leads to the elimination of benzene. Density functional theory (DFT)-based calculations were performed and the computational results also support the benzyl cation/proton transfer mechanism.
Figure
?  相似文献   

15.
Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.
Figure
?  相似文献   

16.
Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54–65). Cleavage at the N–Cα bond of the peptide backbone, producing c′ and z′ ions, was dominant for all peptides. Cleavage of the N–Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.
Graphical Abstract ?
  相似文献   

17.
A conventional electron capture dissociation (ECD) spectrum of a protein is uniquely characteristic of the first dimension of its linear structure. This sequence information is indicated by summing the primary c m+ and z m+? products of cleavage at each of its molecular ion’s inter-residue bonds. For example, the ECD spectra of ubiquitin (M?+?nH)n+ ions, n?=?7–13, provide sequence characterization of 72 of its 75 cleavage sites from 1843 ions in seven c (1–7)+ and eight z (1–8)+? spectra and their respective complements. Now we find that each of these c/z spectra is itself composed of “charge site (CS)” spectra, the c m+ or z m+? products of electron capture at a specific protonated basic residue. This charge site has been H-bonded to multiple other residues, producing multiple precursor ion forms; ECD at these residues yields the multiple products of that CS spectrum. Closely similar CS spectra are often formed from a range of charge states of ubiquitin and KIX ions; this indicates a common secondary conformation, but not the conventional α-helicity postulated previously. CS spectra should provide new capabilities for comparing regional conformations of gaseous protein ions and delineating ECD fragmentation pathways.
Figure
?  相似文献   

18.
We developed a procedure to determine the “identification power” of an LC-MS/MS method operated in the MRM acquisition mode, which is related to its selectivity. The probability of any compound showing the same precursor ion, product ions, and retention time as the compound of interest is used as a measure of selectivity. This is calculated based upon empirical models constructed from three very large compound databases. Based upon the final probability estimation, additional measures to assure unambiguous identification can be taken, like the selection of different or additional product ions. The reported procedure in combination with criteria for relative ion abundances results in a powerful technique to determine the (un)certainty of the selectivity of any LC-MS/MS analysis and thus the risk of false positive results. Furthermore, the procedure is very useful as a tool to validate method selectivity.
Figure
  相似文献   

19.
Here we investigate the effect of S-dipalmitoylation on the electron capture dissociation (ECD) behavior of peptides. The ECD and collision induced dissociation (CID) of peptides modified by covalent attachment of [(RS)-2,3-di(palmitoyloxy)-propyl] (PAM2) group to cysteine residues [C(PAM2)LEYDTGFK and RPPGC(PAM2)SPFK] were examined. The results suggest that ECD of S-dipalmitoylated peptides can provide both primary sequence information and structural information regarding the modification. The structural information provided by CID is complementary to that provided by ECD.
Figure
?  相似文献   

20.
Matrix-assisted laser desorption/ionization in-source decay produces highly informative fragments for the sequencing of peptides/proteins. Among amino acids, cysteine and proline residues were found to specifically influence the fragment yield. As they are both frequently found in small peptide structures for which de novo sequencing is mandatory, the understanding of their specific behaviors would allow useful fragmentation rules to be established. In the case of cysteine, a c?/w fragment pair originating from Xxx–Cys is formed by side-chain loss from the cysteine residue. The presence of a proline residue contributes to an increased yield of ISD fragments originating from N–Cα bond cleavage at Xxx1–Xxx2Pro, which is attributable to the cyclic structure of the proline residue. Our results suggest that the aminoketyl radical formed by MALDI-ISD generally induces the homolytic N–Cα bond cleavage located on the C–terminal side of the radical site. In contrast, N–Cα bond cleavage at Xxx–Pro produces no fragments and the N–Cα bond at the Xxx1–Xxx2Pro bond is alternatively cleaved via a heterolytic cleavage pathway.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号