首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The problem of stabilized plane capillary-gravitational waves of finite amplitude at the surface of a stream of perfect incompressible fluid flowing over an undulating bed and subjected to pressure periodically distributed along the surface and defined by some infinite trigonometric series is considered. The intersection of the bed with a vertical plane is assumed to be a periodic curve, called the bed line, defined by some infinite trigonometric series. The problem is rigorously formulated and reduced to the solution of a system of nonlinear integral and transcendental equations. The solution is constructed in the form of series in powers of a small dimensionless parameter to which amplitudes of the first harmonics of the bed line and of the surface pressure wave are proportional. An approximate equation is derived for the wave profile.The particular case is considered, when the length of the bed line wave arc is equal to the length of the stabilized free wave line corresponding to the specified flow velocity over a horizontal flat bed and constant pressure along the surface. In such case the parameter of the integral equation is equal to one of the eigenvalues of the kernel of that equation and the solution is constructed in the form of series in powers of the cube root of the small parameter mentioned above.A similar problem but for constant pressure along the surface was considered by the author in [1, 2] and in his paper presented at the 13-th International Congress on Theoretical and Applied Mechanics (Moscow, 1972 [3]).Another similar problem of capillary-gravitational waves over an undulating bed was considered in [4], where besides the topological proof of the existence and uniqueness of solution the algorithm for constructing the latter is given, but the calculation of approximations is only outlined and the mechanical meaning of solution is not investigated in depth.Unlike in [4] the equation of the bed line and the expression for pressure at the surface are specified here in a form which makes it possible to express any approximations in the form of finite sums, and an analysis of the fundamental system of nonlinear integral and transcendental equations by the LiapunovSchmidt analytical methods and their developments is presented.  相似文献   

2.
Stokes's method of calculating the form of steady finite-amplitude,gravity waves in deep water involves a series of coefficientsCn related to the Fourier coefficients of the free surface elevation.The condition of constant pressure at the free surface yieldsa series of cubic relations between the Cn, which are normallyused for calculations. In this paper it is shown that the Cnalso satisfy some simpler, quadratic relations, which renderthe calculation of the profile faster and more accurate. The new relations are equivalent to certain integral propertiesinvolving the square of the particle speed, integrated alonga streamline. This enables a generalization to be readily madeto waves in water of finite depth.  相似文献   

3.
4.
The interaction of water waves with circular plate within the framework of a linear theory is considered. The plate lies on the free surface in water of finite depth. The integral transform technique is used to solve this problem. The problem is reduced to a system of dual integral equations for a spectral function. The way to solve these equations consists in converting them into Fredholm integral equation of the second kind. The asymptotic solutions of this equation are obtained. Representations for diffraction field and for the forces on the plate are given.  相似文献   

5.
Two-dimensional travelling waves on an ideal fluid with gravity and surface tension over a periodically moving bottom with a small amplitude are studied. The bottom and the wave travel with a same speed. The exact Euler equations are formulated as a spatial dynamic system by using the stream function. A manifold reduction technique is applied to reduce the system into one of ordinary differential equations with finite dimensions. A homoclinic solution to the normal form of this reduced system persists when higher-order terms are added, which gives a generalized solitary wave—the homoclinic solution connecting a periodic solution.  相似文献   

6.
In this paper we investigate the effect of a prescribed superficial shear stress on the generation and structure of roll waves developing from infinitesimal disturbances on the surface of a power-law fluid layer flowing down an incline. The unsteady equations of motion are depth integrated according to the von Kármán momentum integral method to obtain a non-homogeneous system of nonlinear hyperbolic conservation laws governing the average flow rate and the thickness of the fluid layer. By conducting a linear stability analysis we obtain an analytical formula for the critical conditions for the onset of instability of a uniform and steady flow in terms of the prescribed surface shear stress. A nonlinear analysis is performed by numerically calculating the nonlinear evolution of a perturbed flow. The calculation is carried out using a high-resolution finite volume scheme. The source term is handled by implementing the quasi-steady wave propagation algorithm. Conclusions are drawn regarding the effect of the applied surface shear stress parameter and flow conditions on the development and characteristics of the roll waves arising from the instability. For a Newtonian flow subjected to a prescribed superficial shear stress, using an analytical theory, we show that the nonlinear governing equations do not admit roll waves solutions under conditions when the uniform and steady flow is linearly stable. For the case of a general power-law fluid flow with zero shear stress applied at the surface, the analytical investigation leads to a procedure for calculating the characteristics of a roll waves flow. These results are compared with those yielded by the numerical procedure.  相似文献   

7.
The interaction of flexural‐gravity waves with a thin circular‐arc‐shaped permeable plate submerged beneath the ice‐covered surface of water with uniform finite depth is considered under the assumption of linear theory. The problem is reduced to a second kind hypersingular integral equation for the potential difference across the plate which is solved approximately by an expansion–collocation method. Utilizing the solution, the reflection and the transmission coefficients and the hydrodynamic forces are evaluated numerically. The focus of the paper is to illustrate the effect of a porous curved plate submerged in finite depth water with an ice‐cover on the normally incident waves. Numerical results for a circular‐arc‐shaped plate for different configurations are derived and represented graphically. Also, by choosing an appropriate set of parameters, the known results for a circular‐arc‐shaped rigid plate submerged in deep water and a semicircular porous plate submerged in finite depth water with a free surface are recovered as special cases.  相似文献   

8.
Any weak, steady vortical flow is a solution to leading order of the inviscid fluid equations with a free surface, so long as this flow has horizontal streamlines coinciding with the undisturbed free surface. This work considers the propagation of irrotational surface gravity waves when such a vortical flow is present. In particular, when the vortical flow and the irrotational surface waves are both periodic, resonant interactions can occur between the various components of the flow. The periodic vortical component of the flow is proposed as a model for more complicated vortical flows that would affect surface waves in the ocean, such as the turbulence in the wake of a ship. These resonant interactions are studied in two dimensions, both in the limit of deep water (Part I) and shallow water (Part II). For deep water, the resonant set of surface waves is governed by “triad-like” ordinary differential equations for the wave amplitudes, whose coefficients depend on the underlying rotational flow. These coefficients are calculated explicitly and the stability of various configurations of waves is discussed. The effect of three dimensionality is also briefly mentioned.  相似文献   

9.
In this work, a linear stability analysis is used to investigate a capillary surface waves between two horizontal finite fluid layers. The system is acted upon by a vertical periodic electric field. The problem examines few representatives of porous media. It is also includes finite conductivity, mass and heat transfer. It is assumed that the basic flow is two-dimensional streaming flow. A general dispersion relation governing the linear stability is derived. In contrast with our previous work [23], the present problem shows that the stability criterion depends on the mass and heat transfer parameter. The present study recovers some special cases upon appropriate data choices. The presence of finite conductivity’s together with the dielectric permeability’s make the uniform electric field plays a dual role in the stability criterion. This shows some analogy with the nonlinear stability theory. In addition, the mass and heat transfer parameter as well as the Darcy’s coefficients play a stabilizing role in the stability picture. In case of the Rayleigh–Taylor instability, by means of the Whittaker technique, the parametric excitation of the electrohydrodynamic surface waves is obtained. The transition curve equations are calculated up to the fourth order for a small dimensionless parameter. The analytical results are numerically confirmed.  相似文献   

10.
解析地研究了无限深不可压粘性流体中运动物体产生层流尾迹与自由表面波的相互作用.以定常的Oseen方程模拟受扰流动,对于小振幅自由表面波则采用线性化的运动学和动力学边界条件.在数学描述上,运动物体以Oseen极子模拟,受扰流场分解成表述粘性尾迹的无界奇异Oseen流和描述自由面效应的有界正则Oseen流之和.通过积分变换法,得到自由表面波的精确解.借助Lighthill的两步格式,导出了自由面波高带有附加校正项的渐近解.所得对称解显示了波动的振幅因粘性和潜深的存在而呈指数衰减.  相似文献   

11.
In this paper, a weak Galerkin finite element method for the Oseen equations of incompressible fluid flow is proposed and investigated. This method is based on weak gradient and divergence operators which are designed for the finite element discontinuous functions. Moreover, by choosing the usual polynomials of degree i ≥ 1 for the velocity and polynomials of degree i ? 1 for the pressure and enhancing the polynomials of degree i ? 1 on the interface of a finite element partition for the velocity, this new method has a lot of attractive computational features: more general finite element partitions of arbitrary polygons or polyhedra with certain shape regularity, fewer degrees of freedom and parameter free. Stability and error estimates of optimal order are obtained by defining a weak convection term. Finally, a series of numerical experiments are given to show that this method has good stability and accuracy for the Oseen problem.  相似文献   

12.
For a strongly elliptic system of second-order equations of a special form, formulas for the Poisson integral and Green’s function in a circle and an ellipse are obtained. The operator under consideration is represented by the sum of the Laplacian and a residual part with a small parameter, and the solution to the Dirichlet problem is found in the form of a series in powers of this parameter. The Poisson formula is obtained by the summation of this series.  相似文献   

13.
A two-layer analysis of the transient development of water waves over a viscoelastic ocean bed is presented here. This is a two-dimensional initial value investigation of the transient development of surface and internal wave motions governed by harmonic pressure distribution acting on the free surface in an inviscid liquid over a viscous and elastic ocean bed. The equations of motion and the equation of continuity are described in terms of velocity potential and stream functions. The solution of this problem is obtained by using Laplace and Fourier transform methods. Limiting case of the layers to obtain free surface elevation is also presented.  相似文献   

14.
Steady two-dimensional flow of a dense stream down a slight embankment into a lake or a reservoir is considered. The inflowing water is separated from the ambient lake water by a density interface. This work follows on from earlier work in which the flows down a steep incline with a relatively high flow rate were considered. Here, the flow is slow and the entry angle is small, resulting in waves on the interface. The fluid is assumed to be of finite depth and the incoming channel makes an angle α to the horizontal. Limiting flows are found when the fluid separates at a stagnation point or alternatively when the waves reach maximum steepness. The regions in parameter space where such solutions are obtained are delineated for different flow conditions.  相似文献   

15.
The theory of internal waves between two bodies of immiscible fluid is important both for its interest to ocean engineering and as a source of numerous interesting mathematical model equations that exhibit nonlinearity and dispersion. In this paper we derive a Hamiltonian formulation of the problem of a dynamic free interface (with rigid lid upper boundary conditions), and of a free surface and a free interface, this latter situation occurring more commonly in experiment and in nature. From the formulation, we develop a Hamiltonian perturbation theory for the long‐wave limits, and we carry out a systematic analysis of the principal long‐wave scaling regimes. This analysis provides a uniform treatment of the classical works of Peters and Stoker (28), Benjamin (3, 4), Ono (26), and many others. Our considerations include the Boussinesq and Korteweg–de Vries (KdV) regimes over finite‐depth fluids, the Benjamin‐Ono regimes in the situation in which one fluid layer is infinitely deep, and the intermediate long‐wave regimes. In addition, we describe a novel class of scaling regimes of the problem, in which the amplitude of the interface disturbance is of the same order as the mean fluid depth, and the characteristic small parameter corresponds to the slope of the interface. Our principal results are that we highlight the discrepancies between the case of rigid lid and of free surface upper boundary conditions, which in some circumstances can be significant. Motivated by the recent results of Choi and Camassa (6, 7), we also derive novel systems of nonlinear dispersive long‐wave equations in the large‐amplitude, small‐slope regime. Our formulation of the dynamical free‐surface, free‐interface problem is shown to be very effective for perturbation calculations; in addition, it holds promise as a basis for numerical simulations. © 2005 Wiley Periodicals, Inc.  相似文献   

16.
This paper deals with the steady forced flow of a viscous, incompressible and electrically conducting fluid against a porous rotating disk when a uniform magnetic field acts perpendicular to the disk surface. For small suction the equations of motion are integrated numerically by Kármán-Pohlhausen method, but for large suction a series solution in the inverse powers of the suction parameter is obtained. The effects of disk porosity and magnetic field on the various flow parameters are discussed in detail.  相似文献   

17.
本文对无限长常水深平底渠道中一小振幅入射波经由多个间隔相等、透水性能一致的细孔透水板的反射和透射进行了研究,得到了相邻两板间距l为入射波半波长的倍数时的一个特解.结果表明,当无量纲的孔隙影响参数G0等于透水板个数的一半时消波效果最佳,入射波能量的50%能被消掉.此时反射波与透射波的振幅相等.  相似文献   

18.
In this paper we present numerical solutions to the unsteady convective boundary layer flow of a viscous fluid at a vertical stretching surface with variable transport properties and thermal radiation. Both assisting and opposing buoyant flow situations are considered. Using a similarity transformation, the governing time-dependent partial differential equations are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by a second order finite difference scheme known as the Keller-Box method. The numerical results thus obtained are analyzed for the effects of the pertinent parameters namely, the unsteady parameter, the free convection parameter, the suction/injection parameter, the Prandtl number, the thermal conductivity parameter and the thermal radiation parameter on the flow and heat transfer characteristics. It is worth mentioning that the momentum and thermal boundary layer thicknesses decrease with an increase in the unsteady parameter.  相似文献   

19.
The classical problem of capillary waves propagating at a constant velocity at the surface of a fluid of infinite depth is reexamined. The surface tension is assumed to vary along the free surface. The problem is solved numerically by series truncation. It is shown that the properties of the waves are qualitatively similar to those of waves with constant surface tension and that there are nonsymmetric waves with variable surface tension.  相似文献   

20.
The governing equations of thermoelasticity of transversely isotropic solid with initial stresses are formulated at uniform temperature. These equations are solved analytically in two-dimensions to show the existence of three plane quasi waves, namely, Quasi-Longitudinal (QL), Thermal (T-mode) and Quasi-Transverse (QT) waves. Reflection from a thermally insulated stress free surface of an initial stressed transversely isotropic thermoelastic solid half-space is studied. A particular model is chosen for the numerical computations of the propagation speeds, attenuation coefficients and reflection coefficients. Effects of initial stress parameter and thermal disturbances are observed on speeds of propagation, attenuation coefficients and reflection coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号