首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly stabilised vibration-displacement measurement system, which employs fiber Bragg gratings (FBGs) to interleave two fiber Michelson interferometers that share the common-interferometric-optical path, is presented. The phase change in the interferometric signals of the two fiber Michelson interferometers have been tracked, respectively, with two electronic feedback loops. One of the fiber interferometers is used to stabilise the system by the use of an electronic feedback loop to compensate the environmental disturbances. The second fiber interferometer is used to perform the measurement task and employs another electronic feedback loop to track the phase change in the interferometric signal. The measurement system is able to measure vibration-displacement and provide the sense of direction of the displacement. The frequency range of the measured vibration-displacement is from 0.1 to 200 Hz and the measurement resolution is 10 nm.  相似文献   

2.
A novel two-dimensional (2-D) tilt sensor is demonstrated by incorporating only two fiber Bragg gratings (FBGs) with a hybrid pendulum transducer. The pendulum transducer is specially designed with hollow half at the upper side and solid half at the lower side. Two FBGs were attached on the surface separated by one fourth of the circumference of the rod of pendulum and across the interface of its hollow and solid parts. Reflection peaks of FBGs split by the applied tilt angle. 2-D tilt angle can be determined by monitoring the wavelength separations of the split peak in two FBGs, which is inherently insensitive to temperature. In the experiment, a sensitivity of 0.054 nm/° over a wide range of 20º has been achieved, with the accuracy of 0.27°.  相似文献   

3.
A fiber laser sensor, which consists of two coupled cavities based on three fiber Bragg gratings (two of them acting as sensing elements) and is interrogated via the longitudinal mode beating frequency, is presented. The two resonant cavities have lengths of 4250 m and 4297 m, respectively. Their beating frequency is of the order of 24 kHz, and its shift as a function of the variation of the period of one (or both) of the sensing gratings, induced by strain or temperature changes, can be measured by a radio-frequency analyzer. The system is suitable for long-distance sensing with high spatial resolution and high sensitivity.  相似文献   

4.
We demonstrate coherent beam combining of two-dimensional fiber amplifier arrays with a total of 137 W output power using stochastic parallel gradient descent (SPGD) algorithm. Compact all-fiber polarization-maintained single frequency fiber amplifier chains are developed and four fiber amplifiers are arranged to 2 × 2 laser array with a fill factor of 70% in the near-field. Active phase control is implemented by a digital signal processor (DSP) based SPGD controller. The fringe visibility of the coherent combined beam profile is as high as 81% when the system is closed-loop controlled despite perturbations of the environment.  相似文献   

5.
6.
We propose a high-speed remote fiber Bragg grating (FBG) sensor interrogation system based on a 1.3-μm cascaded Fourier-domain mode-locked (FDML) laser. It consists of multiple FBGs connected to an optical circulator in the laser cavity. The cascaded FDML laser with these multiple FBGs is operational when the scanning frequency of the fiber Fabry-Perot tunable filter matches the fundamental frequency of the laser cavity. Each FBG provides a separate laser cavity for the FDML laser. The scanning frequencies of each laser cavity are 30.5314, 31.5393, 32.7108, and 33.8023 kHz. Using the cascaded FDML laser, we measure the performance of the long-distance static strain FBG sensor interrogation system in both the time and spectral domains. The slope coefficients of the measured relative wavelength difference and the relative time delay from the static strain are found to be 0.95 pm/μstrain and 0.15 ns/μstrain, respectively. We also demonstrate the dynamic response of the interrogation system with 80-Hz modulation strain using the cascaded FDML laser. Thus, an FBG sensor interrogation system for high-speed and high-sensitivity long-distance monitoring systems can be realized using a cascaded FDML laser.  相似文献   

7.
A novel two-dimensional tilt sensor with a large measurement range is demonstrated by using four fiber Bragg gratings (FBGs) attached on a cylindrical cantilever-based pendulum. Experimental results show that tilt accuracy of ±0.2° and resolution of 0.013° have been achieved in the range of −40°-40°. The temperature effect is automatically eliminated without additional temperature compensation elements.  相似文献   

8.
分时复用光纤光栅振动传感器阵列   总被引:1,自引:0,他引:1  
江毅  黄俊斌 《光子学报》2008,37(1):73-76
结合基于3×3耦合器的光纤Mach-Zehnder干涉仪和可调谐光纤Fabry-Perot滤波器(Fiber-Fabry-Perot,FFP),提出了一种分时复用光纤光栅振动传感器的技术.用FFP对串联在一根光纤上的光纤光栅的波长进行轮流扫描,让光栅的反射光按波长顺序依次通过FFP.而对于每一光纤光栅上外加的振动信号,用光纤Mach-Zehnder干涉仪进行测量.实际测量结果显示,FFP结合Mach-Zehnder能够对每一只光栅上的振动信号进行分时测量.  相似文献   

9.
We experimentally demonstrate a fiber ring laser for high-resolution torsion measurement, where the laser cavity consists of a Mach-Zehnder interferometer formed with a pair of long-period fiber gratings written in a twisted single-mode fiber by a CO2 laser. The emitting wavelength of the laser provides a measure of the rate of the torsion applied to the grating pair, while the direction of the wavelength shift indicates the sense of the applied torsion. The narrow linewidth and the large side-mode suppression ratio of the laser can provide a much more precise measurement of torsion, compared with passive fiber-optic torsion sensors. The torsion sensitivity achieved is 0.084 nm/(rad/m) in the torsion range ± 100 rad/m, which corresponds to a torsion resolution of 0.12 rad/m, assuming a wavelength resolution of 10 pm for a typical optical spectrum analyzer. The ultimate resolution of the sensor is limited by the linewidth of the laser and could be an order of magnitude higher.  相似文献   

10.
An optical fiber curvature sensor based on interference between LP01–LP02 modes of a circularly symmetric few mode fiber (FMF) is presented. The device consists of two single-mode fiber and a 10-cm FMF. The two single-mode fiber is offset-spliced to each end of the FMF. When the optical fiber is kept straight and fixed, the interference pattern appears in the transmitted spectrum. As the fiber device is bent, the visibility of the interference fringes (at 1530 nm) decreases, reaching values close to 0.3. The dynamic range of the device can be tailored by the proper selection of the length of FMF. The relationship between the fringe visibility and the curvature is linear while the curvature is between 11 m−1 and 16 m−1. The result indicates that the compact sensor can be used in the measurement of large curvature, which is also important in structural health monitoring.  相似文献   

11.
Fiber Bragg gratings (FBGs) with a length of about 4 cm and a phase shift of about π are written in the polarization-maintaining fiber doped with ytterbium ions. A tunable polarized single-frequency laser is employed for the measurement of the FBG reflection spectrum. A relatively high spectral resolution allows the estimation of the FBG parameters. Polarized single-frequency ytterbium-doped distributed-feedback (DFB) fiber lasers radiated at about 1.1 μm are constructed using the written FBGs. The passive line width of the laser radiation (about 50 kHz) is estimated from the beat spectrum of the two DFB lasers.  相似文献   

12.
13.
A new sensor for simultaneous measurement of humidity and temperature is proposed. The sensor consists of Fabry–Perot cavity formed by two identical uniform fiber Bragg gratings. To make the cavity serves as humidity sensor, moisture sensitive polymer, which is polyimide, is coated on the FBG and on the cavity with different thickness. When the sensor is exposed to the relative humidity change, the polyimide will expand and stretch the fiber and induces strain on the FBG and on the cavity. The induced strain alters the grating period, cavity length and effective refractive index of fiber. The simulation results show that the humidity sensitivity and thermal sensitivity are 1.92 pm/%RH and 8.87 pm/°C, respectively, for polyimide coating thickness of 10 μm on the FBG and 15 μm on the cavity.  相似文献   

14.
Pressure and temperature are two important parameters in reservoir engineering. The fiber optic sensors can be used for permanent downhole monitoring. In this paper, we propose an extrinsic fiber Fabry-Perot interferometer (EFPI) sensor for pressure measurement with low sensitivity variation. The pressure sensitivity of EFPI sensor and of the fiber Bragg grating (FBG) sensors have been measured. The experimental pressure sensitivity for EFPI and FBG sensors are measured to be 2.75 × 10−8 1/kPa and 1.52 × 10−8 1/kPa, respectively. The temperature cross-sensitivity problem of the EFPI sensor has been solved by a new technique. The temperature sensitivity of EFPI sensor has been decreased to 1.2 × 10−6/°C, while the temperature sensitivity of non-compensated EFPI sensor has been measured to be 16.4 × 10−6/°C. The results show that the EFPI sensor has a higher pressure sensitivity and good capability to decrease temperature sensitivity in comparison to FBG sensor.  相似文献   

15.
Experimental observation of phase (i.e. refractive index) component in the dynamic gratings recorded in erbium-doped optical fiber with saturation of optical absorption is reported. We utilized configuration of transient two-wave mixing with rectangular phase modulation of one of counterpropagating recording waves, where unshifted phase grating resulted in a transient energy exchange. The reported experiments were performed with heavily doped (≈5400 ppm erbium) fibers in a wide spectral range of Er3+ fundamental absorption at selected laser wavelengths 1492, 1526, 1549, and 1568 nm. Relative contribution of phase grating was especially large (up to ≈100% of the maximal amplitude component) at the opposite sides of the investigated spectral range and was significantly lower in its central part. The amplitude grating was found especially strong at short wavelength side of the spectrum (i.e. at 1492 nm), where the grating amplitude proved to be only two times lower than the theoretically predicted from consideration of two-level model.  相似文献   

16.
A sensor head consisting of a photonic crystal fiber (PCF)-based Mach-Zehnder interferometer (MZI) and a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of curvature and temperature. The MZI fabricated by splicing a short length of PCF between two single-mode fibers with the air-hole structure that completely collapsed near the splicing points, is sensitive to fiber bending and surrounding temperature, while the FBG is only sensitive to the later. Simultaneous measurement of curvature and temperature is therefore obtained. Sensitivities of 4.06 nm/m− 1 and 6.30 pm/°C are achieved experimentally for curvature and temperature, respectively. And the corresponding resolutions are 5.2 × 10− 4 m− 1 and 1.25 °C for curvature and temperature, respectively, based on the wavelength measurement resolution of 10 pm.  相似文献   

17.
We investigate an asymmetric intensive fiber Bragg grating (FBG) defined Fabry–Perot (F–P) sensor system decoded by a multiple-path-matched Michelson interferometer. The interrogation of higher order reflection beams cannot only solve the problem of the degraded resolution induced by the spectral mismatch of the FBGs, but also amplify the effect of the fiber strain on the phase of the light. We demonstrate multiple reflection beams in the F–P cavity based on the concept of the FBG effective length for constructing respective interrogation interferometers, and present a cost function with optimized system parameters to improve noise properties. The performances of interrogating the second, third and fourth order reflection beams are compared in a strain sensing experiment arrangement. Under the condition of the same optical path length mismatch, the interrogation of the fourth order reflection beam can achieve 9.8 dB sensitivity enhancement and 3 dB resolution promotion compared with the result using the second order reflection beam.  相似文献   

18.
A temperature-independent highly-sensitive curvature sensor by using a tapered-photonic crystal fiber (PCF)-based Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. It is fabricated by sandwiching a tapered-PCF between two standard single mode fibers (SMFs) with the air holes of the PCF in the fusion splicing region being fully collapsed. The tapering of PCF is found to enhance the sensitivity significantly. Large curvature sensitivities of 2.81 dB/m−1 and 8.35 dB/m−1 are achieved in the measurement ranges of 0.36-0.87 m−1 and 0.87-1.34 m−1, respectively, with the resolution of 0.0012 m−1 being guaranteed. The proposed sensor also shows negligible temperature sensitivity less than 0.006 dB/°C.  相似文献   

19.
A study on fiber Bragg grating (FBG) strain sensor, based on erbium-doped fiber (EDF) laser, is presented. A strain-sensing element, FBG, also acts as the lasing wavelength selecting component. When strain is applied on the FBG, the laser cavity loss changes, leading to a modification of the laser transient. Strain measurements are obtained in the time domain by simply measuring the EDF laser build-up time. Relative variation in the build-up time of up to 190%, for a strain range from 0 με to 2350 με, is achieved with a resolution corresponding to a strain of better than 2.35 με. This study demonstrates a novel fiber sensor concept and the technical feasibility to develop fiber strain measurement.  相似文献   

20.
A sensor has been fabricated by the integration of a fiber Bragg gating sensor (FBGs) with a fiber Fabry-Perot (F-P) sensor fabricated by etching method. In the integrated sensor, the FBG was used to measure temperature, while the fiber Fabry-Perot interferometer sensor (FFPIs) was used for strain measurement. Wavelength decoding for FBG and peak tracking for FFPI was employed for demodulation, respectively. The result showed that the temperature and strain sensitivity for the integrated sensor is ~ 2.7 pm/μεand ~ 9.3 pm/°C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号