首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
To improve the chiral recognition capability of a cinchona alkaloid crown ether chiral stationary phase, the crown ether moiety was modified by the chiral group of (1S, 2S)‐2‐aminocyclohexyl phenylcarbamate. Both quinine and quinidine‐based stationary phases were evaluated by chiral acids, chiral primary amines and amino acids. The quinine/quinidine and crown ether provided ion‐exchange sites and complex interaction site for carboxyl group and primary amine group in amino acids, respectively, which were necessary for the chiral discrimination of amino acid enantiomers. The introduction of the chiral group greatly improved the chiral recognition for chiral primary amines. The structure of crown ether moiety was proved to play a dominant role in the chiral recognitions for chiral primary amines and amino acids.  相似文献   

2.
Two novel types of crown ether capped β‐cyclodextrin (β‐CD) bonded silica, namely, 4′‐aminobenzo‐X‐crown‐Y (X=15, 18 and Y=5, 6, resp.) capped [3‐(2‐O‐β‐cyclodextrin)‐2‐hydroxypropoxy] propylsilyl‐appended silica, have been prepared and used as stationary phases in capillary electrochromatography (CEC) to separate chiral compounds. The two stationary phases have a chiral selector with two recognition sites: crown ether and β‐CD. They exhibit excellent enantioselectivity in CEC for a wide range of compounds. After inclusion of metal ions (Na+ or K+) from the running buffer into the crown ether units, the stationary phases become positively charged and can provide extra electrostatic interaction with ionizable solutes and enhance the dipolar interaction with polar neutral solutes. This enhances the host‐guest interaction with the solute and improves chiral recognition and enantioselectivity. Due to the cooperation of the anchored β‐CD and the crown ether, this kind of crown ether capped β‐CD bonded phase shows better enantioselectivity than either β‐CD‐ or crown ether bonded phases only. These new types of stationary phases have good potential for fast chiral separation with CEC.  相似文献   

3.
《中国化学》2017,35(7):1037-1042
Three new chiral stationary phases (CSPs ) for high‐performance liquid chromatography were prepared from R ‐(3,3'‐halogen substituted‐1,1'‐binaphthyl)‐20‐crown‐6 (halogen = Cl, Br and I). The experimental results showed that R ‐(3,3'‐dibromo‐1,1'‐binaphthyl)‐20‐crown‐6 ( CSP ‐1 ) possesses more prominent enantioselectivity than the two other halogen‐substituted crown ether derivatives. All twenty‐one α ‐amino acids have different degrees of separation on R ‐(3,3'‐dibromo‐1,1'‐binaphthyl)‐20‐crown‐6‐based CSP ‐1 at room temperature. The enantioselectivity of CSP ‐1 is also better than those of some commercial R ‐(1,1'‐binaphthyl)‐20‐crown‐6 derivatives. Both the separation factors (α ) and the resolution (R s) are better than those of commercial crown ether‐based CSPs [CROWNPAK CR (+) from Daicel] under the same conditions for asparagine, threonine, proline, arginine, serine, histidine and valine, which cannot be separated by commercial CR (+). This study proves the commercial usefulness of the R ‐(3,3'‐dibromo‐1,1'‐binaphthyl)‐20‐crown‐6 chiral stationary phase.  相似文献   

4.
In this study, a series of novel CD chiral stationary phases were fabricated by immobilization of mono‐6A‐deoxy‐N3‐cyclodextrin onto silica surfaces followed by click regulation of CD primary face with 4‐pentynoic acid (acidic moiety), 2‐propynylamine (alkaline moiety) and L‐propargylglycine (chiral amino acid moiety), respectively. Enantioseparations of various kinds of racemates including dansyl‐amino acids, chiral lactides and diketones were conducted in reversed phase modes on these chiral stationary phases, where nearly forty diketones and chiral lactides were firstly separated on cyclodextrin stationary phases. 4‐Pentynoic acid moiety can make the retention ability decline while amine moiety significantly enhanced the retention ability of the stationary phases. For most of the studied analytes, the chiral amino acid moiety had the most positive effects on both the retention time and the resolution. The inclusion complexation between chiral analytes and cyclodextrins were also investigated by fluorescence method.  相似文献   

5.
Two liquid chromatographic chiral stationary phases based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid were applied to the resolution of the amide derivatives of cyclic α‐amino acids including proline and pipecolic acid. Among the five amide derivatives of proline, aniline amide was resolved best on the first chiral stationary phase, which contains two N–H tethering amide groups, with the separation factor of 1.31 and the resolution of 2.60, and on the second chiral stationary phase, which contains two N–CH3 tethering amide groups, with the separation factor of 1.57 and the resolution of 5.50. Among the five amide derivatives of pipecolic acid, 2‐naphthyl amide was resolved best on the first chiral stationary phase with the separation factor of 1.30 and the resolution of 1.75, but 1‐naphthylmethyl amide was resolved best on the second chiral stationary phase with the separation factor of 1.30 and the resolution of 2.26. In general, the second chiral stationary phase was found to be better than the first chiral stationary phase in the resolution of the amide derivatives of cyclic α‐amino acids. In this study, the second chiral stationary phase was first demonstrated to be useful for the resolution of secondary amino compounds.  相似文献   

6.
By connecting a quinine or quinidine moiety to the peptoid chain through the C9‐position carbamate group, we synthesized two new chiral selectors. After immobilizing them onto 3‐mercaptopropyl‐modified silica gel, two novel chiral stationary phases were prepared. With neutral, acid, and basic chiral compounds as analytes, we evaluated these two stationary phases and compared their chromatographic performance with chiral columns based on quinine tert‐butyl carbamate and the previous peptoid. From the resolution of neutral and basic analytes under normal‐phase mode, it was found that the new stationary phases exhibited much better enantioselectivity than the quinine tert‐butyl carbamate column; the peptoid moiety played an important role in enantiorecognition, which controlled the elution orders of enantiomers; the assisting role of the cinchona alkaloid moieties was observed in some separations. Under acid polar organic phase mode, it was proved that cinchona alkaloid moieties introduced excellent enantiorecognitions for chiral acid compounds; in some separations, the peptoid moiety affected enantioseparations as well. Overall, chiral moieties with specific enantioselectivity were demonstrated to improve the performance of peptoid chiral stationary phase efficiently.  相似文献   

7.
合成了一种新型奎宁-冠醚组合型手性固定相(QN-CR CSP)并用于氨基酸手性对映体的直接拆分,该固定相对12种氨基酸对映体有良好的手性拆分能力。基于氨基酸手性识别中离子交换和络合的协同作用,建立了一种新型的等温吸附模型。通过迎头特殊点洗脱法(FACP)测定色氨酸(Trp)在不同金属离子添加剂条件下的等温吸附线,验证了模型的合理性。流动相中的Li+、Na+、K+等金属离子与氨基酸竞争固定相中的冠醚络合位点,随着金属离子与冠醚的络合作用力和络合吸附平衡常数增大,固定相对Trp的手性拆分能力下降。该模型的建立对理解氨基酸在此类固定相中的手性保留行为以及固定相结构的进一步优化具有重要意义。  相似文献   

8.
Abstract

The direct optical resolution of six dipeptides into four stereoisomers each was achieved on an enantioselective crown ether column. An inclusion complex is formed between the stationary phase and the solute when using an acidic mobile phase. The acidic mobile phase serves to protonate the requisite primary amine of the dipeptide thereby allowing an attractive interaction between the ammonium functional group and the oxygens of the crown ether. Due to the differences in stability of the complexes formed, the four optical isomers elute at different times allowing the stereoisomeric separation. One of the factors affecting enantioselectivity is the distance between the primary amine functional group and the stereogenic center of the chiral moiety. Dipeptides are particularly useful molecules for the studying this “distance effect” since the bonding order of the two amino acids can be reversed. In addition to the enantiomeric separations of dipeptides possessing two stereogenic centers, the behavior of dipeptide separations possessing only one chiral center (i.e., with achiral glycine as one of the residues) is examined to gain additional insight into the mechanism and the effect of the proximity of the primary amine group to the chiral center.  相似文献   

9.
In the enantiomeric separation of highly polar compounds, a traditionally challenging task for high‐performance liquid chromatography, ion‐exchange chiral stationary phases have found the main field of application. In this contribution, we present a series of novel anion‐exchange‐type chiral stationary phases for enantiomer separation of protected amino phosphonates and N‐protected amino acids. Two of the prepared selectors possessed a double and triple bond within a single molecule. Thus, they were immobilized onto silica support employing either a thiol‐ene (radical) or an azide‐yne (copper(I)‐catalyzed) click reaction. We evaluated the selectivity and the effect of immobilization proceeding either by the double bond of the Cinchona alkaloid or a triple bond of the carbamoyl moiety on the chromatographic performance of the chiral stationary phases using analytes with protecting groups of different size, flexibility, and π‐acidity. The previously observed preference toward protecting groups possessing π‐acidic units, which is a typical feature of Cinchona‐based chiral stationary phases, was preserved. In addition, increasing the bulkiness of the selectors’ carbamoyl units leads to significantly reduced retention times, while very high selectivity toward the tested analytes is retained.  相似文献   

10.
An overview is presented of the applicability of the crown ether 18-crown-6-tetracarboxylic acid (18C6H4) as buffer additive in capillary electrophoresis (CE) for the separation of enantiomers. The chiral selector 18C6H4 is particularly useful for the separation of racemates having a primary amino function. Unfortunately, the crown ether is no longer commercially available. The synthesis and spectroscopic characterization are therefore described in detail. Moreover, a method is presented for the regeneration of the crown ether after CE application. Some new enantiomeric separations of amino acids i.e. NORLEU, ARG, GLU, m-TYR, and o-TYR are listed and the influence of the pH and temperature of the separation buffer is discussed. An intermediate in the synthetic pathway, namely 18-crown-6-tetracarboxamide, did not exhibit any enantioselectivity in CE.  相似文献   

11.
Tert‐butylcarbamoyl‐quinine and ‐quinidine weak anion‐exchange chiral stationary phases (Chiralpak® QN‐AX and QD‐AX) have been applied for the separation of sodium β‐ketosulfonates, such as sodium chalconesulfonates and derivatives thereof. The influence of type and amount of co‐ and counterions on retention and enantioresolution was investigated using polar organic mobile phases. Both columns exhibited remarkable enantiodiscrimination properties for the investigated test solutes, in which the quinidine‐based column showed better enantioselectivity and slightly stronger retention for all analytes compared to the quinine‐derived chiral stationary phase. With an optimized mobile phase (MeOH, 50 mM HOAc, 25 mM NH3), 12 of 13 chiral sulfonates could be baseline separated within 8 min using the quinidine‐derivatized column. Furthermore, subcritical fluid chromatography (SubFC) mode with a CO2‐based mobile phase using a buffered methanolic modifier was compared to HPLC. Generally, SubFC exhibited slightly inferior enantioselectivities and lower elution power but also provided unique baseline resolution for one compound.  相似文献   

12.
The enantiomeric pairs of cis and trans stereoisomers of cyclic β‐aminohydroxamic acids and their related cis and trans cyclic β‐amino acids containing two chiral centers were directly separated on four structurally related chiral stationary phases derived from quinine and quinidine modified with (R,R)‐ and (S,S)‐aminocyclohexanesulfonic acids. Applying these zwitterionic ion‐exchangers as chiral selectors, the effects of the composition of the bulk solvent, the acid and base additives, the structures of the analytes, and temperature on the enantioresolution were investigated. To study the effects of temperature and obtain thermodynamic parameters, experiments were carried out at constant mobile phase compositions in the temperature range 5–50°C. The differences in the changes in standard enthalpy Δ(ΔH°), entropy Δ(ΔS°), and free energy Δ(ΔG°) were calculated from the linear van't Hoff plots derived from the ln α versus 1/T curves in the studied temperature range. Results thus obtained indicated enthalpy‐driven separations in all cases. The sequence of elution of the enantiomers was determined and found to be reversed when ZWIX(–)™ was changed to ZWIX(+)™ or ZWIX(–A) to ZWIX(+A).  相似文献   

13.
《Tetrahedron: Asymmetry》2006,17(12):1883-1889
This paper reports the preparation and testing of a new pyridino-18-crown-6 ether based chiral stationary phase (CSP). The chiral crown ether was covalently bound to silica gel. Circular dichroism (CD) spectroscopy was used for probing the complex formation of the chiral crown ether with the enantiomers of protonated primary arylalkylamines. The (S,S)-dimethylpyridino-18-crown-6 ether selector having a terminal double bond was first transformed to a triethoxysilyl derivative by regioselective hydrosilylation, and then heated with spherical HPLC quality silica gel to obtain the CSP. The discriminating power of the HPLC column filled with the above CSP was tested by using the hydrogenperchlorate salts of racemic α-(1-naphthyl)ethylamine (1-NEA), α-(2-naphthyl)ethylamine (2-NEA) and the hydrochloride salts of aromatic α-amino acids and α-amino acids containing different aromatic side-chain protecting groups.  相似文献   

14.
We have designed and synthesized two new achiral hexa-peri-hexabenzocoronene (HBC) derivatives, HBCCE and HBCTEG-CE , which bear the crown ether as the pendant for the amino acid binding site. The HBCCE self-assembled into a racemic mixture of P- and M-handed helical nanocoils, however, in the presence of chiral amino acid guests, it formed helical nanocoils with one-handed screw sense. The effects of the concentration, type and configuration of the guests on the induced circular dichroism (ICD) during the co-assembly of HBCCE with chiral amino acids were also investigated. Additionally, after complete removal of the chiral guests, the optically active nanocoils did not racemize, even in the presence of excess amino acids with the opposite configuration. In contrast, HBCTEG-CE with a long triethylene glycol (TEG) chain between the crown ether group and the HBC unit did not exhibit ICD during the co-assembly with chiral amino acids.  相似文献   

15.
Chiral 2‐hydroxycarboxylic acids are compounds that have been linked to particular diseases and are putative biomarkers with some diagnostic potential. The importance of identifying whether a particular enantiomer is related to certain diseases has been encouraged recently. However, in many cases it has not yet been elucidated whether there are stereochemical implications with respect to these biomarkers and whether their enantioselective analysis provides new insights and diagnostic potential. In this study 13 disease‐related chiral 2‐hydrocarboxylic acids were studied for their chiral separation by high‐performance liquid chromatography on three cinchona alkaloid‐derived chiral stationary phases. From a subgroup of eight 2‐hydroxymonocarboxylic acids, baseline resolution could be achieved and inversion of elution order by exchanging tert‐butylcarbamoyl quinidine chiral stationary phase (Chiralpak QD‐AX) for the corresponding quinine analogue (Chiralpak QN‐AX) is shown for seven of them. Furthermore, conditions for chiral separation of the 2‐hydroxydicarboxylic acids, citramalic acid, 2‐isopropylmalic acid, and 2‐hydroxyadipic acid are reported and compared to the previous reported conditions for 2‐hydroxyglutaric acid and malic acid.  相似文献   

16.
HPLC enantiomeric separations of 8 α‐amino acids were achieved using two self‐made chiral stationary phases (CSP)–phenyl isocyanate teicoplanin (Phe‐TE) and 3,5‐dimethylphenyl isocyanate teicoplanin (DMP‐TE), using reversed phase mobile phases. The Phe‐TE or the DMP‐TE CSP was prepared from the TE using derivative agents, phenyl isocyanate or 3,5‐dimethylphenyl isocyanate, respectively. The chromatographic results were given as the retention, selectivity, resolution factor and the enantioselective free energy difference corresponding to the separation of the two enantiomers. The effect of pH, organic modifier type and amount were discussed, and the stereoselectivities for two TE‐based CSPs were compared. The chiral selectivity factor for six α‐amino acids on DMP‐TE is somewhat bigger than that on Phe‐TE CSP under reversed phase (RP) mode. Comparison of the enantiomeric separations using self‐made Phe‐TE and DMP‐TE was conducted to gain a better understanding of the chiral recognition mechanism of the macrocyclic glycopeptide CSP.  相似文献   

17.
A new platform technology for the preparation of stable chiral stationary phases was successfully optimized. The chiral selector tert‐butylcarbamoylquinine was firstly covalently connected to the polymer poly(3‐mercaptopropyl)methylsiloxane by thiol‐ene click reaction. Secondly, the quinine carbamate functionalized polysiloxane conjugate was coated onto the surface of vinyl modified silica particles and cross‐linked via thiol‐ene click reaction. The amount of polysiloxane, chiral selector, radical initiator, reaction solvent (chloroform and methanol), reaction time, and pore size of the supporting silica particles were varied and systematically optimized in terms of achievable plate numbers while maintaining simultaneously enantioselectivity. The optimization was based on elemental analysis data, chromatographic results, and H/u‐curves (Van Deemter) of the resultant chiral stationary phases. The results suggest that better chromatographic efficiency (higher plate numbers) at equal enantioselectivity can be achieved with methanol (a poor solvent for the polysiloxane that is dispersed rather than dissolved) and a lower film thickness of quinine carbamate functionalized polysiloxane. In this study, chiral stationary phases based on 100 Å silica slightly outperformed 200 Å silica particles (each 5 μm). The optimized two step material exhibited significantly reduced mass transfer resistance compared to the one step material and equal performance as a brush‐type chiral stationary phase.  相似文献   

18.
A novel optically active amphiphilic diblock copolymer bearing quinine pendants poly(ethylene oxide)‐b‐poly(glycidyl triazolyl‐L ‐quinine) (MPEO‐b‐PGTQ) was synthesized by “click” reaction of alkyne‐modified diblock copolymer poly(ethylene oxide)‐b‐poly(glycidyl propargyl ether) (MPEO‐b‐PGPE) and 9‐N3‐quinine. The structure and composition of copolymers were characterized by gel permeation chromatography, 1H nuclear magnetic resonance spectroscopy (1H NMR), elemental analysis and optical rotation measurements, which showed that the synthetic route could provide the copolymer with well‐defined composition and with similar optical activity compared to its parent quinine. The micellization behavior of this chiral copolymer was investigated in different solvent systems. The results from fluorescence spectroscopy, UV spectroscopy, dynamic light scattering, transmission electron microscopy, 1H NMR and circular dichroism (CD) spectroscopy indicated that the MPEO‐b‐PGTQ could form regular chiral spherical micelles in H2O and Tetrahydrofuran‐H2O (10:90, V/V) systems, and the state of aggregated chiral micelles depended on the nature of the medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3640–3650, 2009  相似文献   

19.
《Tetrahedron: Asymmetry》2006,17(11):1700-1704
A chiral monoaza-15-crown-5 ether derivative was prepared from l-Leucinol and used as a chiral stationary phase. The new chiral stationary phases CSP-1 and CSP-2 were employed in separating the enantiomers of the sodium and potassium salts of amino acids. The sodium and potassium salt of the d-enantiomers of all amino acids (PhyAlaNa, PhyAlaK and PhyGlyNa, PhyGlyK, and TrpNa, TrpK) show higher selectivity than the l-enantiomers for both CSP-1 and CSP-2.  相似文献   

20.
The effect of analyte lipophilicity on the resolution of α-amino acids on a chiral stationary phase based on chiral crown ether has been examined by the chromatographic resolution trends for the resolution of a homologous series of five α-amino acids with an alkyl group of different length at the chiral center. The retention factors (k1 and k2) for the two enantiomers and the separation factors (α) were found to depend on the lipophilicity of the α-amino acid. In general, the retention factors increased as the organic modifier content in the mobile phase increased, the degree of the enhancement of retention factors being dependent on the analyte lipophilicity. The separation factors also increased as the analyte lipophilicity and the organic modifier content in the mobile phase increased. Possible rationales for these behaviors have been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号