首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Woods LA  Powell PR  Paxon TL  Ewing AG 《Electroanalysis》2005,17(13):1192-1197
Capillary electrophoresis in 770 nanometer inner diameter capillaries coupled to electrochemical detection with an etched electrode matching an etched capillary (etched electrochemical detection) has been used with ultrasmall sampling to inject subcellular samples from intact single mammalian cells. Separations of cytoplasmic samples taken from rat pheochromocytoma cells have been achieved. As little as 8% of the total volume of a single cell has been sampled and analyzed. Dopamine has been identified and quantified in these PC12 cells using this technique. The average cytoplasmic level of dopamine in rat pheochromocytoma cells has been determined to be 240 ± 60 μM. The use of electrophoresis in 770 nanometer inner diameter capillaries with electrochemical detection to monitor cytoplasmic neurotransmitters at the single cell level can provide information about complex cellular functions such as neurotransmitter storage and synthesis.  相似文献   

2.
3.
Carbon fiber nanoelectrodes (tip diameter = ca. 100 nm) have been first used to monitor real-time dopamine release from single living vesicles of single rat pheochromocytoma (PC12) cells. The experiments show that active and inactive release sites exist on the surface of cells, and the spatial distributions have been differentiated even in the same active release zone. It is first demonstrated that multiple vesicles can sequentially release dopamine at the same site of the cell surface, which possibly plays the main role in the dopamine release from PC12 cells.  相似文献   

4.
Carbon nanofiber electrode architectures are used to provide for long-term, neuroelectroanalytical measurements of the dynamic processes of intercellular communication between excitable cells. Individually addressed, vertically aligned carbon nanofibers are incorporated into multielement electrode arrays upon which excitable cell matrixes of both neuronal-like derived cell lines (rat pheochromocytoma, PC-12) and primary cells (dissociated cells from embryonic rat hippocampus) are cultured over extended periods (days to weeks). Electrode arrays are characterized with respect to their response to easily oxidized neurotransmitters, including dopamine, norepinephrine, and 5-hydroxytyramide. Electroanalysis at discrete electrodes following long-term cell culture demonstrates that this platform remains responsive for the detection of easily oxidized species generated by the cultured cells. Preliminary data also suggests that quantal release of easily oxidized transmitters can be observed at nanofiber electrodes following direct culture and differentiation on the arrays for periods of at least 16 days.  相似文献   

5.
胡深 《分析化学》1998,26(6):752-756
用自组装的毛细管电泳微电极安培检测系统,分析了鼠的单个交感神经细胞。大白鼠经麻醉、微解剖及酶解分离出新鲜的单个交感神经细胞。采用全细胞进样,用异丙肾上腺素 作内标。测定了儿茶酚胺类神经递质去甲肾上腺素和肾上腺素。检测限分别达 57 amol和 59 amol。八个活细胞分析结果,每个细胞平均含去甲肾上腺素 455 amol及肾上腺素 65 amol。  相似文献   

6.
In the present work, chemiluminescence detection was integrated with capillary electrophoresis microchip. The microchip was designed on the principle of flow-injection chemiluminescence system and capillary electrophoresis. It has three main channels, five reservoirs and a detection cell. As model samples, dopamine and catechol were separated and detected using a permanganate chemiluminescent system on the prepared microchip. The samples were electrokinetically injected into the double-T cross section, separated in the separation channel, and then oxidized by chemiluminescent reagent delivered by a home-made micropump to produce light in the detection cell. The electroosmotic flow could be smoothly coupled with the micropump flow. The detection limits for dopamine and catechol were 20.0 and 10.0 μM, respectively. Successful separation and detection of dopamine and catechol demonstrated the distinct advantages of integration of chemiluminescent detection on a microchip for rapid and sensitive analysis.  相似文献   

7.
Electrically addressable cell traps were integrated with capillary electrophoresis for the analysis of the contents of single adherent cells. Electrodes composed of indium tin oxide were patterned on a glass surface followed by formation of topographical cell traps using 1002F photoresist. Single cells trapped in the holes could be lysed in less than 66 ms by applying a brief electric field (10 ms) across the electrode beneath the cell and the ground electrode placed in the aqueous media above the cell traps. The gas formed during cell lysis remained localized within the cavity formed by the 1002F photoresist. The retention of the gas in the cell trap enabled the cell traps to be coupled to an overlying capillary without blockage of the capillary. Single cells cultured in the traps were loaded with fluorescein and Oregon Green and then electrically lysed. By simultaneous application of an electric field to the capillary, the cell's contents were loaded into the capillary and electrophoretically separated. Orgeon Green and fluorescein from a single cell were fully resolved in less than two minutes. The use of a single patterned electrode beneath the 1002F cell trap yielded a simple easily fabricated design that was robust when immersed in aqueous solutions. Moreover, the design can easily be scaled up to create arrays of adherent cells for serial analyses using a single capillary or for parallel analysis by mating to an array of capillaries. Enhancing the rate of analysis of single adherent cells would enable a greater understanding of cellular physiology.  相似文献   

8.
Histamine is one of the chemical mediators in connection with allergies. Only Pihel et al.1 reported a method for detection of histamine in isolated mast cells by high- performance liquid chromatography with electrochemical detection. In this method, single cells were removed and transferred to 300-nL microvials. A part of the supernatant from individual vials was injected into the chromatography column. The analysis of histamine in individual rat peritoneal mast cells using CZE with amp…  相似文献   

9.
Narrow peaks are important to high‐resolution and high‐speed separation of DNA fragments by capillary electrophoresis and microchip capillary electrophoresis. Detection cell length is one of the broadening factors, which is often ignored in experiments. However, is it always safe to neglect detection cell length under any condition? To answer this question, we investigated the influence of detection cell length by simulation and experiments. A parameter named as detection cell length ratio was proposed to directly compare the detection cell length and the spatial length of sample band. Electrophoretic peaks generated by various detection cell length ratios were analyzed. A simple rule to evaluate the peak broadening due to detection cell length was obtained. The current states of the detection cell length of detection system and their reliabilities in capillary electrophoresis and microchip capillary electrophoresis were analyzed. Microchip capillary electrophoresis detection with an ultra‐small detection cell length of 0.36 μm was easily achieved by using an image sensor.  相似文献   

10.
Tools to evaluate oncogenic kinase activity in small clinical samples have the power to guide precision medicine in oncology. Existing platforms have demonstrated impressive insights into the activity of protein kinases, but these technologies are unsuitable for the study of kinase behavior in large numbers of primary human cells. To address these limitations, we developed an integrated analysis system that utilizes a light‐programmable, cell‐permeable reporter deliverable simultaneously to many cells. The reporter's ability to act as a substrate for Akt, a key oncogenic kinase, was masked by a 2‐4,5‐dimethoxy 2‐nitrobenzyl (DMNB) moiety. Upon exposure to ultraviolet light and release of the masking moiety, the substrate sequence enabled programmable reaction times within the cell cytoplasm. When coupled to automated single‐cell capillary electrophoresis, statistically significant numbers of primary human cells were readily evaluated for Akt activity.  相似文献   

11.
In this work, a facile approach was developed to modify a fused‐silica capillary inner surface based on poly(dopamine) and poly(acrylamide) mixed coatings for protein separation by capillary electrophoresis. The surface morphology, thickness, and chemical components of poly(dopamine)/poly(acrylamide) mixed coatings on glass slides and silicon wafers were studied by atom force microscopy, ellipsometry, and X‐ray photoelectron spectroscopy, respectively. The hydrophilicity and stability of the mixed coatings on glass slides were investigated by static water contact angle measurements. A comparative study of electroosmotic flow showed that the poly(dopamine)/poly(acrylamide) mixed coatings could provide effective suppression of electroosmotic flow. Meanwhile, the fast and efficient separations of the mixture of four alkaline proteins, the mixture of acidic, basic, and neutral proteins and egg white proteins were obtained by capillary electrophoresis. Furthermore, the consecutive protein separation runs and low RSDs of migration time demonstrated that these poly(dopamine)/poly(acrylamide) mixed coatings were capable of minimizing protein adsorption during the protein separation by using capillary electrophoresis.  相似文献   

12.
Shi B  Huang W  Cheng J 《Electrophoresis》2007,28(10):1595-1600
A sensitive fluorescence detection system with an Hg-lamp as the excitation source and a photon counter as the detector for microchip CE (MCE) has been developed. O-Phthaldialdehyde (OPA, lambda(ex) = 340 nm) was employed to label the catecholamine neurotransmitters such as dopamine (DA), norepinephrine (NE), and amino acid neurotransmitters including alanine (Ala), taurine (Tau), glycine (Gly), glutamic acid (Glu), and aspartic acid (Asp). The separation of seven derivatized neurotransmitters was successfully performed in MCE and the detection limits (S/N = 3) for DA, NE, Ala, Tau, Gly, Glu, and Asp were 0.85, 0.49, 0.23, 0.15, 0.13, 0.18, and 0.29 fmol, respectively. The system was then successfully applied for separation and determination of neurotransmitters in rat pheochromocytoma (PC 12) cells, and the average amounts of analyte per cell from a cell population were 2.5 fmol for DA, 3.3 fmol for Ala, 8.2 fmol for Tau, 4.0 fmol for Gly, and 1.9 fmol for Glu, respectively. By single-cell injection mode, electrophoresis separation and quantitative measurement of Glu in individual PC 12 cells was obtained. The average value of Glu per cell from single PC 12 cells analysis was found to be 3.5 +/- 3.1 fmol.  相似文献   

13.
一种新型毛细管电泳柱端喷壁安培检测池   总被引:8,自引:2,他引:8  
刘志明 《分析化学》1998,26(6):786-791
提出一种新型毛细管电泳柱端喷壁安培检测池。它制作简单,操作容易,具有很好的重现性和灵敏度。用这种安培检测池,可以不使用微动平台很容易地将工作电极与分离毛细管出口对准。为评价该安培检测池的分析性能,用毛细管电泳柱端安培检测法分别检测了酚、儿茶酚胺和芳香胺。考察了电动进样时间、分离电压以及毛细管出口与电极的间距对响应电流和分离效能的影响。通过对酚和儿茶酚胺测定的重现性、浓度线性范围及检出限的考察,结果表明该安培池是精密可靠的。同时,用该安培池对标准加入于血浆样品中的多巴胺(DA)、去甲基肾上腺素(NE)和原儿茶醛(PA)进行了测定,结果令人满意。  相似文献   

14.
《Electroanalysis》2005,17(13):1171-1180
In this paper, we describe a microchip‐based system for amperometrically monitoring the amount of catecholamines released from rat pheochromocytoma (PC 12) cells. Key to this system is a novel, yet simple method for the immobilization of PC 12 cells in poly(dimethylsiloxane) (PDMS)‐based microchannels. The procedure involves selectively coating microchannels with collagen followed by introduction of PC 12 cells over the PDMS structure, with the cells being immobilized only on the coated portion of the channels. The cell‐coated microchannels can then be reversibly sealed to a glass plate containing electrodes for amperometric detection, resulting in an immobilized cell reactor with integrated microelectrodes. Nafion‐coated microelectrodes made by micromolding of carbon inks were used to measure calcium‐induced catecholamine release from the cells. Varying concentrations of PC 12 cells immobilized in the microchannels led to a catecholamine release ranging from 20 to 160 μM when the cells were stimulated with a calcium solution. This microchip approach leads to a three‐dimensional culture that can be used with this or other cells lines to study the effect of external stimuli on neurotransmitter release.  相似文献   

15.
16.
A lab-on-a-chip device that enables positioning of single or small ensembles of cells on an aperture in close proximity to a mercaptopropionic acid (MPA) modified sensing electrode has been developed and characterized. The microchip was used for the detection of Ca(2+)-dependent quantal catecholamine exocytosis from single as well as small assemblies of rat pheochromocytoma (PC12) cells. The frequency of events increased considerably upon depolarization of the PC12 cell membrane using a high extracelluar concentration of potassium. The number of recorded events could be correlated with the number of cells immobilized on the electrode. Quantal characteristics, such as the number of released molecules per recorded event, are equivalent to data obtained using conventional carbon fiber microelectrodes. The detection sensitivity of the device allows for the detection of less than 10 000 dopamine molecules in a quantal release. The distribution of peak rise-time and full width at half maximum was constant during measurement periods of several minutes demonstrating the stability of the MPA modified surface.  相似文献   

17.
The present study describes a simple strategy to integrate electrochemical detection with an assembled microchip‐capillary electrophoresis platform. The electrochemical cell was integrated with a microfluidic device consisting of five plastic squares interconnected with fused silica capillaries, forming a four‐way injection cross between the separation channel and three side‐arms (each of 15 mm in length) acting as buffer/sample reservoirs. The performance of the system was evaluated using electrodes made with either carbon ink, carbon nanotubes, or gold and under different experimental conditions of pH, capillary length, and injection time. Using this system it was possible to separate the neurotransmitters dopamine and cathecol and to quantify phenol from a real sample using a linear calibration curve with a calculated LOD of 0.7 µM. A similar concept was applied to determine glucose, by including a pre‐reactor filled with beads modified with glucose oxidase (GOx). The latter system was used to determine glucose in a commercial sample, with a recovery of 95.2 %. Overall, the presented approach represents a simple, inexpensive, and versatile approach to integrate electrochemical detection with CE separations without requiring access to microfabrication facilities.  相似文献   

18.
Cheng H  Huang WH  Chen RS  Wang ZL  Cheng JK 《Electrophoresis》2007,28(10):1579-1586
Microelectrodes have been adopted in electrochemical detection for CE or microchip CE in recent years. In this paper, the use of nanoelectrodes (with tip diameter of 100-300 nm) as the electrochemical detector in microchip CE is firstly reported. The experimental results indicated that both the sensitivity and resolution of microchip CE with the carbon fiber nanoelectrode (CFNE) amperometric detection have been improved markedly comparing with the traditional microelectrodes. The detection limit of dopamine (S/N = 3) is 5.9x10(-8) M, which is one or two orders of magnitude lower than that reported so far, and the resolution of dopamine (DA) and isoprenaline (IP) has also improved from 0.6 (using 7 mum carbon fiber microelectrodes, CFME) to 1.0. We assembled a novel and easily operated microchip CE system with end-column amperometric detection, which allows the convenient and fast replacement of the passivated electrodes. Under the optimized condition, the RSDs of peak height and migration time are 1.47 and 0.31%, respectively (n = 40), indicating that the system displays excellent reproducibility. The nanoelectrode-based microchip CE system has been successfully applied to the determination of DA in cultured rat pheochromocytoma (PC12) cells, and the average content of DA in an individual PC12 cell is 0.54 +/- 0.07 fmol, which is in good agreement with that reported in the literature.  相似文献   

19.
A novel method of intracellular derivatization was developed. In this method, the derivatization reagents [naphthalene-2,3-dicarboxaldehyde (NDA) and CN-] were introduced into living cells by electroporation for the derivatization reaction. After completion of derivatization reaction in cells, a single cell was drawn into the capillary tip by electroosmotic flow. Then the lysing solution was introduced into the capillary by diffusion. Once the individual cell was lysed, the derivatized amino acids in the individual cell were separated by capillary zone electrophoresis and detected by end-column amperometric detection at the outlet of the capillary. This method of intracellular NDA derivatization confined the analytes and the derivatization reagents to the volume of a single cell expanded. For an 8-microm erythrocyte, the contents were diluted by a factor of only ca. 1.6. The method was used to determination of amino acids in single erythrocytes. Six amino acids were identified and quantified.  相似文献   

20.
Capillary electrophoresis with large‐volume sample stacking using an electroosmotic flow pump was developed for the determination of chondroitin sulfate, dermatan sulfate, and hyaluronic acid. Central composite design was used to simultaneously optimize the parameters for capillary electrophoresis separation. The optimized capillary electrophoresis conditions were 200 mM sodium dihydrogen phosphate, 200 mM butylamine, and 0.5% w/v polyethylene glycol as a background electrolyte, pH 4 and ‐16 kV. Exploiting large‐volume sample stacking using an electroosmotic flow pump, the sensitivity of the proposed capillary electrophoresis system coupled with UV detection was significantly improved with limits of detection of 3, 5, 1 mg/L for chondroitin sulfate, dermatan sulfate, and hyaluronic acid, respectively. The developed method was applied to the determination of chondroitin sulfate and hyaluronic acid in cell culture media, cerebrospinal fluid, cosmetic products, and supplementary samples with highly acceptable accuracy and precision. Therefore, the proposed capillary electrophoresis approach was found to be simple, rapid, and reliable for the determination of chondroitin sulfate, dermatan sulfate, and hyaluronic acid in cell culture media, cerebrospinal fluid, cosmetic, and supplementary samples without sample pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号