首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The electronic absorption spectra of pyridine and nicotine in aqueous solution have been computed using a multistep approach. The computational protocol consists in studying the solute solvation with accurate molecular dynamics simulations, characterizing the hydrogen bond interactions, and calculating electronic transitions for a series of configurations extracted from the molecular dynamics trajectories with a polarizable QM/MM scheme based on the fluctuating charge model. Molecular dynamics simulations and electronic transition calculations have been performed on both pyridine and nicotine. Furthermore, the contributions of solute vibrational effect on electronic absorption spectra have been taken into account in the so called vertical gradient approximation. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

2.
3.
An accurate first-principles treatment of chemical reactions for large systems remains a significant challenge facing electronic structure theory. Hybrid models, such as quantum mechanics:molecular mechanics (QM:MM) and quantum mechanics:quantum mechanics (QM:QM) schemes, provide a promising avenue for such studies. For many chemistries, including important reactions in materials science, molecular mechanics or semiempirical methods may not be appropriate, or parameters may not be available (e.g., surface chemistry of compound semiconductors such as indium phosphide or catalytic chemistry of transition metal oxides). In such cases, QM:QM schemes are of particular interest. In this work, a QM:QM electronic embedding model within the ONIOM (our own N-layer integrated molecular orbital molecular mechanics) extrapolation framework is presented. To define the embedding potential, we choose the real-system low-level Mulliken atomic charges. This results in a set of well-defined and unique embedding charges. However, the parametric dependence of the charges on molecular geometry complicates the energy gradient that is necessary for the efficient exploration of potential energy surfaces. We derive an efficient form for the forces where a single set of self-consistent field response equations is solved. Initial tests of the method and key algorithmic issues are discussed.  相似文献   

4.
We applied the quantum mechanics/fluctuating charges (QM/FQ) method to simulate the absorption spectra of three protonated forms of p-hydroxybenzylidene imidazolone (p-HBDI) in water. Configurations of solute-solvent were generated from molecular dynamics (MD) simulation within the context of a hybrid scheme in which solute and solvents were treated at QM and molecular mechanics, respectively. Nonperiodic spherical boundary condition was used. To examine the influence on simulated spectra coming from the geometrical relaxation of solute, the MD simulations were carried out for two cases: frozen and flexible molecular geometry of solute. As a result of our calculations, the simulations using the flexible solute's structure delivered vertical excitation energies closer to experimental data than those of a frozen solute, especially for the neutral case. For spectral broadening, changing from fixed geometry of solute to a flexible one led to a significant increase for both neutral and anionic forms of p-HBDI, but no effect happened for the cationic one.  相似文献   

5.
A new computational protocol relying on the use of electrostatic embedding, derived from QM/QM’ ONIOM calculations, to simulate the effect of the crystalline environment on the emission spectra of molecular crystals is here applied to the β‐form of salicylidene aniline (SA). The first singlet excited states (S1) of the SA cis‐keto and trans‐keto conformers, surrounded by a cluster of other molecules representing the crystalline structure, were optimized by using a QM/QM’ ONIOM approach with and without electronic embedding. The model system consisting of the central salicylidene aniline molecule was treated at the DFT level by using either the B3LYP, PBE0, or the CAM‐B3LYP functional, whereas the real system was treated at the HF level. The CAM‐B3LYP/HF level of theory provides emission energies in good agreement with experiment with differences of ?20/?32 nm ( cis‐keto form) and ?8/?14 nm ( trans‐keto form), respectively, whereas notably larger differences are obtained using global hybrids. Though such differences on the optical properties arise from the density functional choice, the contribution of the electronic embedding is rather independent of the functional used. This plays in favor of a more general applicability of the present protocol to other crystalline molecular systems. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
The first three valence transitions of the two nitromethane conformers (CH3NO2) are two dark n → π* transitions and a very intense π → π* transition. In this work, these transitions in gas‐phase and solvated in water of both conformers were investigated theoretically. The polarizable continuum model (PCM), two conductor‐like screening (COSMO) models, and the discrete sequential quantum mechanics/molecular mechanics (S‐QM/MM) method were used to describe the solvation effect on the electronic spectra. Time dependent density functional theory (TDDFT), configuration interaction including all single substitutions and perturbed double excitations (CIS(D)), the symmetry‐adapted‐cluster CI (SAC‐CI), the multistate complete active space second order perturbation theory (CASPT2), and the algebraic‐diagrammatic construction (ADC(2)) electronic structure methods were used. Gas‐phase CASPT2, SAC‐CI, and ADC(2) results are in very good agreement with published experimental and theoretical spectra. Among the continuum models, PCM combined either with CASPT2, SAC‐CI, or B3LYP provided good agreement with available experimental data. COSMO combined with ADC(2) described the overall trends of the transition energy shifts. The effect of increasing the number of explicit water molecules in the S‐QM/MM approach was discussed and the formation of hydrogen bonds was clearly established. By including explicitly 24 water molecules corresponding to the complete first solvation shell in the S‐QM/MM approach, the ADC(2) method gives more accurate results as compared to the TDDFT approach and with similar computational demands. The ADC(2) with S‐QM/MM model is, therefore, the best compromise for accurate solvent calculations in a polar environment. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
We discuss the role of the protein in controlling the absorption spectra of photoactive yellow protein (PYP), the archetype xanthopsin photoreceptor, using quantum mechanics/molecular mechanics (QM/MM) methods based on ab initio multireference perturbation theory, combined with molecular dynamics (MD) simulations. It is shown that in order to get results in agreement with the experimental data, it is necessary to use a model that allows for a proper relaxation of the whole system and treats the states involved in the electronic spectrum in a balanced way, avoiding biased results due to the effect of nonrepresentative electrostatic interactions on the chromophore.  相似文献   

8.
9.
The implementation and validation of the adaptive buffered force (AdBF) quantum‐mechanics/molecular‐mechanics (QM/MM) method in two popular packages, CP2K and AMBER are presented. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM‐MM interface errors by discarding forces near the boundary according to the buffered force‐mixing approach. New adaptive thermostats, needed by force‐mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl‐phosphate hydrolysis using various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force‐mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

10.
11.
We present a quantum mechanical (QM) simulation of the electronic circular dichroism (ECD) of nucleic acids (NAs). The simulation combines classical molecular dynamics, to obtain the structure and its temperature‐dependent fluctuations, with a QM excitonic model to determine the ECD. The excitonic model takes into account environmental effects through a polarizable embedding and uses a refined approach to calculate the electronic couplings in terms of full transition densities. Three NAs with either similar conformations but different base sequences or similar base sequences but different conformations have been investigated and the results were compared with experimental observations; a good agreement was seen in all cases. A detailed analysis of the nature of the ECD bands in terms of their excitonic composition was also carried out. Finally, a comparison between the QM and the DeVoe models clearly revealed the importance of including fluctuations of the excitonic parameters and of accurately determining the electronic couplings. This study demonstrates the feasibility of the ab initio simulation of the ECD spectra of NAs, that is, without the need of experimental structural or electronic data.  相似文献   

12.
A technique for implementing the integrated molecular orbital and molecular mechanics (IMOMM) methodology developed by Maseras and Morokuma that is used to perform combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations, frequency calculations and simulations of macromolecules including explicit solvent is presented. Although the IMOMM methodology is generalized to any coordinate system, the implementation first described by Maseras and Morokuma requires that the QM and MM gradients be transformed into internal coordinates before they are added together. This coordinate transformation can be cumbersome for macromolecular systems and can become ill-defined during the course of a molecular dynamics simulation. We describe an implementation of the IMOMM method in which the QM and MM gradients are combined in the cartesian coordinate system, thereby avoiding potential problems associated with using the internal coordinate system. The implementation can be used to perform combined QM/MM molecular dynamics simulations and frequency calculations within the IMOMM framework. Finally, we have examined the applicability of thermochemical data derived from IMOMM framework. Finally, we have examined the applicability of thermochemical data derived from IMOMM frequency calculations. Received: 11 May 1998 / Accepted: 14 August 1998 / Published online: 16 November 1998  相似文献   

13.
14.
A combination of the polarizable continuum model (PCM) and the hybrid quantum mechanics/molecular mechanics (QM/MM) methodology, PCM-MM/QM, is used to include the solute electronic polarization and then study the solvent effects on the low-lying n→π(?) excitation energy and the (15)N nuclear magnetic shielding of pyrazine and pyridazine in aqueous environment. The results obtained with PCM-MM/QM are compared with two other procedures, i.e., the conventional PCM and the iterative and sequential QM/MM (I-QM/MM). The QM calculations are made using density functional theory in the three procedures. For the excitation energies, the time-dependent B3LYP/6-311+G(d) model is used. For the magnetic shielding, the B3LYP/aug-pcS2(N)/pcS2(C,O,H) is used with the gauge-including atomic orbitals. In both cases, i.e., PCM-MM/QM and I-QM/MM, that use a discrete model of the solvent, the solute is surrounded by a first shell of explicit water molecules embedded by an electrostatic field of point charges for the outer shells. The best results are obtained including 28 explicit water molecules for the spectral calculations and 9 explicit water molecules for the magnetic shielding. Using the PCM-MM/QM methodology the results for the n→π(?) excitation energies of pyridazine and pyrazine are 32,070 ± 80 cm(-1) and 32,675 ± 60 cm(-1), respectively, in good agreement with the corresponding I-MM/QM results of 32,540 ± 80 cm(-1) and 32,710 ± 60 cm(-1) and the experimental results of 33,450-33,580 cm(-1) and 32,700-33,300 cm(-1). For the (15)N magnetic shielding, the corresponding numbers for the gas-water shifts obtained with PCM-MM/QM are 47.4 ± 1.3 ppm for pyridazine and 19.7 ± 1.1 ppm for pyrazine, compared with the I-QM/MM values of 53.4?±?1.3 ppm and 19.5 ± 1.2 ppm and the experimental results of 42-54 ppm and 17-22 ppm, respectively. The agreement between the two procedures is found to be very good and both are in agreement with the experimental values. PCM-MM/QM approach gives a good solute polarization and could be considered in obtaining reliable results within the expected QM/MM accuracy. With this electronic polarization, the solvent effects on the electronic absorption spectra and the (15)N magnetic shielding of the diazines in water are well described by using only an electrostatic approximation. Finally, it is remarked that the experimental and theoretical results suggest that the (15)N nuclear magnetic shielding of any diazine has a clear dependence with the solvent polarity but not directly with the solute-solvent hydrogen bonds.  相似文献   

15.
We carried out a theoretical study of the HZSM‐5 zeolite, for different SiO2/Al2O3 ratios, that interacts with the n‐heptane molecule. The study was performed using a QM/MM (quantum mechanics/molecular mechanics) methodology. For the QM part, we have chosen a hybrid Hartree‐Fock density functional theory (DFT). The hybrid ACM/DZP approach, as implemented in Turbomole, was used for the treatment of the QM cluster containing 84 atoms that represents a ring structure model of the zeolite‐n‐heptane interacting system. The MM part was represented by means of an electrostatic forcefield (ESFF), which assesses the electronic embedding. The chosen QM/MM silicalite base model contains 3862 atoms. The studied SiO2/Al2O3 ratios were 2300, 573.5, 287.7, and 189.83, containing 1, 4, 8, and 12 Al atoms, respectively. For the first ratio, the site for the substitution of Al for Si was that of minimum QM total energy value, because this replacement was done in the QM region. For the other SiO2/Al2O3 ratios, the Al atoms were randomly spread through the MM region in accordance with the Lowenstein substitution rule. These results show the importance of the environment on the electronic properties in the QM region, where the active site lies, and their effects on the earlier steps on the activation experienced by the n‐heptane moiety. A minimal content of 12 Al atoms produces significant effects of the environment on the electronic structure of the QM region. Moreover, the carbocationic character of n‐heptane increases with the aluminum content. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

16.
We report systematic quantum mechanics‐only (QM‐only) and QM/molecular mechanics (MM) calculations on an enzyme‐catalyzed reaction to assess the convergence behavior of QM‐only and QM/MM energies with respect to the size of the chosen QM region. The QM and MM parts are described by density functional theory (typically B3LYP/def2‐SVP) and the CHARMM force field, respectively. Extending our previous work on acetylene hydratase with QM regions up to 157 atoms (Liao and Thiel, J. Chem. Theory Comput. 2012, 8, 3793), we performed QM/MM geometry optimizations with a QM region M4 composed of 408 atoms, as well as further QM/MM single‐point calculations with even larger QM regions up to 657 atoms. A charge deletion analysis was conducted for the previously used QM/MM model ( M3a , with a QM region of 157 atoms) to identify all MM residues with strong electrostatic contributions to the reaction energetics (typically more than 2 kcal/mol), which were then included in M4 . QM/MM calculations with this large QM region M4 lead to the same overall mechanism as the previous QM/MM calculations with M3a , but there are some variations in the relative energies of the stationary points, with a mean absolute deviation (MAD) of 2.7 kcal/mol. The energies of the two relevant transition states are close to each other at all levels applied (typically within 2 kcal/mol), with the first (second) one being rate‐limiting in the QM/MM calculations with M3a ( M4 ). QM‐only gas‐phase calculations give a very similar energy profile for QM region M4 (MAD of 1.7 kcal/mol), contrary to the situation for M3a where we had previously found significant discrepancies between the QM‐only and QM/MM results (MAD of 7.9 kcal/mol). Extension of the QM region beyond M4 up to M7 (657 atoms) leads to only rather small variations in the relative energies from single‐point QM‐only and QM/MM calculations (MAD typically about 1–2 kcal/mol). In the case of acetylene hydratase, a model with 408 QM atoms thus seems sufficient to achieve convergence in the computed relative energies to within 1–2 kcal/mol.Copyright © 2013 Wiley Periodicals, Inc.  相似文献   

17.
We review some recent advances in quantum mechanical methods devised specifically for the study of excited electronic state of large size molecules in solution. The adopted theoretical/computational framework is rooted in the density functional theory (DFT) and its time-dependent extension (TD-DFT) for the characterization of ground and excited states, in the polarizable continuum model (PCM) for the treatment of bulk solvent effects, and in time-dependent quantum mechanical methods for chemical dynamics. Selected applications to the simulation of absorption spectra, to the interpretation of time-resolved experiments, and to the computation of dissociative electron transfer rates are presented and discussed.  相似文献   

18.
The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009 , 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self‐consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree–Fock–Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self‐consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave‐function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
20.
The approximate density‐functional tight‐binding theory method DFTB3 has been implemented in the quantum mechanics/molecular mechanics (QM/MM) framework of the Gromacs molecular simulation package. We show that the efficient smooth particle–mesh Ewald implementation of Gromacs extends to the calculation of QM/MM electrostatic interactions. Further, we make use of the various free‐energy functionalities provided by Gromacs and the PLUMED plugin. We exploit the versatility and performance of the current framework in three typical applications of QM/MM methods to solve biophysical problems: (i) ultrafast proton transfer in malonaldehyde, (ii) conformation of the alanine dipeptide, and (iii) electron‐induced repair of a DNA lesion. Also discussed is the further development of the framework, regarding mostly the options for parallelization. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号