首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Parameterization of a molecular dynamics force field is essential in realistically modeling the physicochemical processes involved in a molecular system. This step is often challenging when the equations involved in describing the force field are complicated as well as when the parameters are mostly empirical. ReaxFF is one such reactive force field which uses hundreds of parameters to describe the interactions between atoms. The optimization of the parameters in ReaxFF is done such that the properties predicted by ReaxFF matches with a set of quantum chemical or experimental data. Usually, the optimization of the parameters is done by an inefficient single‐parameter parabolic‐search algorithm. In this study, we use a robust metropolis Monte‐Carlo algorithm with simulated annealing to search for the optimum parameters for the ReaxFF force field in a high‐dimensional parameter space. The optimization is done against a set of quantum chemical data for MgSO4 hydrates. The optimized force field reproduced the chemical structures, the equations of state, and the water binding curves of MgSO4 hydrates. The transferability test of the ReaxFF force field shows the extend of transferability for a particular molecular system. This study points out that the ReaxFF force field is not indefinitely transferable. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
In this work, parameters are optimized for a charge‐on‐spring based polarizable force field for linear alcohols. We show that parameter transferability can be obtained using a systematic approach in which the effects of parameter changes on physico‐chemical properties calculated from simulation are predicted. Our previously described QM/MM calculations are used to attribute condensed‐phase polarizabilities, and starting from the non‐polarizable GROMOS 53A5/53A6 parameter set, van der Waals and Coulomb interaction parameters are optimized to reproduce pure‐liquid (thermodynamic, dielectric, and transport) properties, as well as hydration free energies. For a large set of models, which were obtained by combining small perturbations of 10 distinct parameters, values for pure‐liquid properties of the series methanol to butanol were close to experiment. From this large set of models, we selected 34 models without special repulsive van der Waals parameters to distinguish between hydrogen‐bonding and non‐hydrogen‐bonding atom pairs, to make the force field simple and transparent. © 2017 Wiley Periodicals, Inc.  相似文献   

3.
We have used unbiased global optimization to fit a reactive force field to a given set of reference data. Specifically, we have employed genetic algorithms (GA) to fit ReaxFF to SiOH data, using an in‐house GA code that is parallelized across reference data items via the message‐passing interface (MPI). Details of GA tuning turn‐ed out to be far less important for global optimization efficiency than using suitable ranges within which the parameters are varied. To establish these ranges, either prior knowledge can be used or successive stages of GA optimizations, each building upon the best parameter vectors and ranges found in the previous stage. We have finally arrive‐ed at optimized force fields with smaller error measures than those published previously. Hence, this optimization approach will contribute to converting force‐field fitting from a specialist task to an everyday commodity, even for the more difficult case of reactive force fields. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The widely used CHARMM additive all‐atom force field includes parameters for proteins, nucleic acids, lipids, and carbohydrates. In the present article, an extension of the CHARMM force field to drug‐like molecules is presented. The resulting CHARMM General Force Field (CGenFF) covers a wide range of chemical groups present in biomolecules and drug‐like molecules, including a large number of heterocyclic scaffolds. The parametrization philosophy behind the force field focuses on quality at the expense of transferability, with the implementation concentrating on an extensible force field. Statistics related to the quality of the parametrization with a focus on experimental validation are presented. Additionally, the parametrization procedure, described fully in the present article in the context of the model systems, pyrrolidine, and 3‐phenoxymethylpyrrolidine will allow users to readily extend the force field to chemical groups that are not explicitly covered in the force field as well as add functional groups to and link together molecules already available in the force field. CGenFF thus makes it possible to perform “all‐CHARMM” simulations on drug‐target interactions thereby extending the utility of CHARMM force fields to medicinally relevant systems. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

5.
We have developed empirical force field parameters for Pt(II) and cisplatin. Two force field frameworks were used—modified OPLS‐AA and our second‐order polarizable POSSIM. A seven‐site model was used for the Pt(II) ion. The goal was to create transferable parameter sets compatible with the force field models for proteins and general organic compounds. A number of properties of the Pt(II) ion and its coordination compounds have been considered, including geometries and energies of the complexes, hydration free energy, and radial distribution functions in water. Comparison has been made with experimental and quantum mechanical results. We have demonstrated that both versions are generally capable of reproducing key properties of the system, but the second‐order polarizable POSSIM formalism permits more accurate quantitative results to be obtained. For example, the energy of formation of cisplatin as calculated with the modified OPLS‐AA exhibited an error of 9.9%, while the POSSIM error for the same quantity was 6.2%. The produced parameter sets are transferable and suitable to be used in protein‐metal binding simulations in which position or even coordination of the ion does not have to be constrained using preexisting knowledge. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
We present an automated, open source toolkit for the first‐principles screening and discovery of new inorganic molecules and intermolecular complexes. Challenges remain in the automatic generation of candidate inorganic molecule structures due to the high variability in coordination and bonding, which we overcome through a divide‐and‐conquer tactic that flexibly combines force‐field preoptimization of organic fragments with alignment to first‐principles‐trained metal‐ligand distances. Exploration of chemical space is enabled through random generation of ligands and intermolecular complexes from large chemical databases. We validate the generated structures with the root mean squared (RMS) gradients evaluated from density functional theory (DFT), which are around 0.02 Ha/au across a large 150 molecule test set. Comparison of molSimplify results to full optimization with the universal force field reveals that RMS DFT gradients are improved by 40%. Seamless generation of input files, preparation and execution of electronic structure calculations, and post‐processing for each generated structure aids interpretation of underlying chemical and energetic trends. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
We explored the energy‐parameter space of our coarse‐grained UNRES force field for large‐scale ab initio simulations of protein folding, to obtain good initial approximations for hierarchical optimization of the force field with new virtual‐bond‐angle bending and side‐chain‐rotamer potentials which we recently introduced to replace the statistical potentials. 100 sets of energy‐term weights were generated randomly, and good sets were selected by carrying out replica‐exchange molecular dynamics simulations of two peptides with a minimal α‐helical and a minimal β‐hairpin fold, respectively: the tryptophan cage (PDB code: 1L2Y) and tryptophan zipper (PDB code: 1LE1). Eight sets of parameters produced native‐like structures of these two peptides. These eight sets were tested on two larger proteins: the engrailed homeodomain (PDB code: 1ENH) and FBP WW domain (PDB code: 1E0L); two sets were found to produce native‐like conformations of these proteins. These two sets were tested further on a larger set of nine proteins with α or α + β structure and found to locate native‐like structures of most of them. These results demonstrate that, in addition to finding reasonable initial starting points for optimization, an extensive search of parameter space is a powerful method to produce a transferable force field. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

8.
Reactive molecular dynamics (RMD) implementations equipped with force field approaches to simulate both the time evolution as well as chemical reactions of a broad class of materials are reviewed herein. We subdivide the RMD approaches developed during the last decade as well as older ones already reviewed in 1995 by Srivastava and Garrison and in 2000 by Brenner into two classes. The methods in the first RMD class rely on the use of a reaction cutoff distance and employ a sudden transition from the educts to the products. Due to their simplicity these methods are well suited to generate equilibrated atomistic or material‐specific coarse‐grained polymer structures. In connection with generic models they offer useful qualitative insight into polymerization reactions. The methods in the second RMD class are based on empirical reactive force fields and implement a smooth and continuous transition from the educts to the products. In this RMD class, the reactive potentials are based on many‐body or bond‐order force fields as well as on empirical standard force fields, such as CHARMM, AMBER or MM3 that are modified to become reactive. The aim with the more sophisticated implementations of the second RMD class is the investigation of the reaction kinetics and mechanisms as well as the evaluation of transition state geometries. Pure or hybrid ab initio, density functional, semi‐empirical, molecular mechanics, and Monte Carlo methods for which no time evolution of the chemical systems is achieved are excluded from the present review. So are molecular dynamics techniques coupled with quantum chemical methods for the treatment of the reactive regions, such as Car–Parinello molecular dynamics.  相似文献   

9.
This goal of this study is to examine the incompressible steady 2D flow of MHD Carreau Yasuda model along with the heat generation and chemical reaction near a zero velocity region. The magnetic field and thermally conducting fluid towards a stretching cylinder are very significant due to its usage in the various manufacturing sector. Chemical reactions are widely practice in everyday life as turning nutrition into energy fuel for our body, food change, fireworks expulsions, removing grimes, photosynthesis, etc. The nonlinear flow model equations and their corresponding boundary conditions are changed into non-dimensional shape using similarity variables. The role of vital parameters is discussed with the assistance of MATLAB software by BVP4C method. It is concluded that the momentum increases for rising the curvature and stretching ratio parameter. This is examined that the heat field improves for rising behavior of the magnetic force, curvature coefficient and heat generation. The fluid concentration upsurges due to curvature and magnetic field parameter while reverse results shown due to chemical reaction parameter. We graphically investigate the impression of magnetic effect and chemical force for heat and mass profiles.  相似文献   

10.
11.
A supervised, semiautomated approach to force field parameter fitting is described and applied to the SIBFA polarizable force field. The I‐NoLLS interactive, nonlinear least squares fitting program is used as an engine for parameter refinement while keeping parameter values within a physical range. Interactive fitting is shown to avoid many of the stability problems that frequently afflict highly correlated, nonlinear fitting problems occurring in force field parametrizations. The method is used to obtain parameters for the H2O, formamide, and imidazole molecular fragments and their complexes with the Mg2+ cation. Reference data obtained from ab initio calculations using an auc‐cc‐pVTZ basis set exploit advances in modern computer hardware to provide a more accurate parametrization of SIBFA than has previously been available. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Nucleic acid force fields have been shown to reproduce structural properties of DNA and RNA very well, but comparative studies with respect to thermodynamic properties are rare. As a test for thermodynamic properties, we have computed hydration free energies and chloroform‐to‐water partition coefficients of nucleobases using the AMBER‐99, AMBER‐gaff, CHARMM‐27, GROMOS‐45a4/53a6 and OPLS‐AA force fields. A mutual force field comparison showed a very large spread in the calculated thermodynamic properties, demonstrating that some of the parameter sets require further optimization. The choice of solvent model used in the simulation does not have a significant effect on the results. Comparing the hydration free energies obtained by the various force fields to the adenine and thymine experimental values showed a very large deviation for the GROMOS and AMBER parameter sets. Validation against experimental partition coefficients showed good agreement for the CHARMM‐27 parameter set. In view of mutation studies, differences in partition coefficient between two bases were also compared, and good agreement between experiments and calculations was found for the AMBER‐99 parameter set. Overall, the CHARMM‐27 parameter set performs best with respect to the thermodynamic properties tested here. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
14.
15.
On the basis of quantum chemical calculations C(alpha)-glycyl radical parameters have been developed for the OPLS-AA/L force field. The molecular mechanics hypersurface was fitted to the calculated quantum chemical surface by minimizing their molecular mechanics parameter dependent sum-of-squares deviations. To do this, a computer program in which the molecular mechanics energy derivatives with respect to the parameters were calculated analytically was developed, implementing the general method of Lifson and Warshel (J Chem Phys 1968, 49, 5116) for force field parameter optimization. This program, in principle, can determine the optimal parameter set in one calculation if enough representative value points on the quantum chemical potential energy surface are available and there is no linear dependency between the parameters. Some of the parameters in quantum calculations, including several new torsion types around a bond as well as angle parameters at a new central atom type, are not completely separable. Consequently, some restrictions and/or presumptions were necessary during parameter optimization. The relative OPLS-AA energies reproduced those calculated quantum chemically almost perfectly.  相似文献   

16.
17.
We estimate the binding free energy between peptides and an MHC class II molecule using molecular dynamics (MD) simulations with the weighted histogram analysis method (WHAM). We show that, owing to its more thorough sampling in the available computational time, the binding free energy obtained by pulling the whole peptide using a coarse‐grained (CG) force field (MARTINI) is less prone to significant error induced by inadequate‐sampling than using an atomistic force field (AMBER). We further demonstrate that using CG MD to pull 3–4 residue peptide segments while leaving the remaining peptide segments in the binding groove and adding up the binding free energies of all peptide segments gives robust binding free energy estimations, which are in good agreement with the experimentally measured binding affinities for the peptide sequences studied. Our approach thus provides a promising and computationally efficient way to rapidly and reliably estimate the binding free energy between an arbitrary peptide and an MHC class II molecule. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
We present new DMT‐based and JKR‐based methods to derive the elastic modulus of sample surfaces from an atomic force microscope force‐distance curve (DMT: Derjaguin‐Muller‐Toporov, JKR: Johnson–Kendall–Roberts). Application of the methods to the Maugis–Dugdale curves revealed that the JKR‐based method determines very accurate moduli for Maugis' transitional parameter λ > 0.3; however, the DMT‐based method generally estimates much less accurate moduli. The new JKR‐based method has advantages over the two‐point method, which has been often used for the JKR analysis, in capabilities to select the fitting range and to involve more than two points in curve fitting. Utilizing the advantages, for example, one can limit the fitting range to the attractive force zone to reduce the contact area of soft and adhesive materials. The method consists of algebraical calculation and optionally linear fitting; hence, the computational cost is low enough to be applicable to a real‐time JKR analysis method of fast force mapping. The detailed procedure of the method is explained using a force‐distance curve on a poly(dimethylsiloxane) surface. The advantages of the method are demonstrated using a force mapping data on a vulcanized rubber blend. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1279–1286  相似文献   

19.
Over the past 4 years the GROMOS96 force field has been successfully used in biomolecular simulations, for example in peptide folding studies and detailed protein investigations, but no applications to lipid systems have been published yet. Here we provide a detailed investigation of aliphatic liquid systems. For liquids of larger aliphatic chains, n‐heptane and longer, the standard GROMOS96 parameter sets 43A1 and 43A2 yield a too low pressure at the experimental density. Therefore, a reparametrization of the GROMOS96 force field regarding aliphatic carbons was initiated. The new force field parameter set 45A3 shows considerable improvements for n‐alkanes, cyclo‐, iso‐, and neoalkanes and other branched aliphatics. Liquid densities and heat of vaporization are reproduced for almost all of these molecules. Excellent agreement is found with experiment for the free energy of hydration for alkanes. The GROMOS96 45A3 parameter set should, therefore, be suitable for application to lipid aggregates such as membranes and micelles, for mixed systems of aliphatics with or without water, for polymers, and other apolar systems that may interact with different biomolecules. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1205–1218, 2001  相似文献   

20.
Presented is an extension of the CHARMM General Force Field (CGenFF) to enable the modeling of sulfonyl‐containing compounds. Model compounds containing chemical moieties such as sulfone, sulfonamide, sulfonate, and sulfamate were used as the basis for the parameter optimization. Targeting high‐level quantum mechanical and experimental crystal data, the new parameters were optimized in a hierarchical fashion designed to maintain compatibility with the remainder of the CHARMM additive force field. The optimized parameters satisfactorily reproduced equilibrium geometries, vibrational frequencies, interactions with water, gas phase dipole moments, and dihedral potential energy scans. Validation involved both crystalline and liquid phase calculations showing the newly developed parameters to satisfactorily reproduce experimental unit cell geometries, crystal intramolecular geometries, and pure solvent densities. The force field was subsequently applied to study conformational preference of a sulfonamide based peptide system. Good agreement with experimental IR/NMR data further validated the newly developed CGenFF parameters as a tool to investigate the dynamic behavior of sulfonyl groups in a biological environment. CGenFF now covers sulfonyl group containing moieties allowing for modeling and simulation of sulfonyl‐containing compounds in the context of biomolecular systems including compounds of medicinal interest. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号