首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If gravity is quantized, one of the consequences may be that the spacetime coordinates are quantized and become noncommutative. The κ-Minkowski spacetime is such kind of noncommutative spacetime. In this paper, the resonance interaction energy of a two-atom system coupled with a fluctuating vacuum scalar field in the κ-Minkowski spacetime is studied. It is found that the resonance interaction energy is dependent on the interatomic separation, the transition wavelength of the atoms, and the spacetime non-commutativity. When the interatomic separation is small compared with a characteristic length determined by the spacetime non-commutativity parameter and the transition wavelength, the resonance interaction energy is that in the Minkowski spacetime plus a correction due to the spacetime non-commutativity. When the interatomic separation is comparable to or larger than the characteristic length, the resonance interaction energy cannot be organized in the form of a Minkowski term plus a correction, which indicates that the long-range behavior of the vacuum in the κ-Minkowski spacetime is fundamentally different from that in the Minkowski spacetime.  相似文献   

2.
Following the scheme developed by Misner and Sharp, we discuss the dynamics of gravitational collapse. For this purpose, an interior cylindrically symmetric spacetime is matched to an exterior charged static cylindrically symmetric spacetime using the Darmois matching conditions. Dynamical equations are obtained with matter dissipating in the form of shear viscosity. The effect of charge and dissipative quantities over the cylindrical collapse are studied. Finally, we show that homogeneity in energy density and conformal flatness of spacetime are necessary and sufficient for each other.  相似文献   

3.
Using Lie approximate symmetry methods for differential equations second-order approximate symmetries of the geodesic equations for the Kerr–Newman-AdS (KN-AdS) spacetime are investigated. For this purpose the KN-AdS metric is considered as a second perturbation of the AdS metric. A rescaling of the arc length parameter for consistency of the trivial second-order approximate symmetries of the geodesic equations indicates that the energy in the KN-AdS spacetime has to be rescaled. There is an extra contribution to the energy of the KN-AdS spacetime due to the cosmological constant. This energy expression is compared with that for the Kerr–Newman (KN) spacetime.  相似文献   

4.
A hybrid machinery that is useful for calculations in teleparallel theories when the spacetime is spherically symmetric is developed. Using this machinery, the gravitational energy–momentum tensor density of the Schwarzschild spacetime is evaluated in a frame adapted to observers that accelerate in the radial direction. The energy density, the total energy, and the gravitational energy-momentum flux are obtained. The regularization procedure and the limit where gravity is absent is discussed. It turns out that the regularized energy and energy–momentum flux are consistent in the whole spacetime. The continuity equation for the gravitational energy–momentum also holds for any point outside the black hole. Finally, the static and freely falling cases are discussed. It is found that a static observer measures a negative gravitational energy density, while a freely falling one measures a vanishing density.  相似文献   

5.
Here we present an example of an axially symmetric spacetime, representing pure radiation, and admitting circular closed timelike curves (CTCs) on the $z= \hbox {constant plane}$ . The spacetime is regular everywhere, having no curvature singularities and is locally isometric to (non-vacuum) pp wave spacetimes. The stability of the CTCs under linear perturbations is studied and they are found to be stable from a calculation of the Lyapunov exponent for the deviation vector. We also demonstrate that the spacetime also admits non-circular CTCs which do not lie in this plane. A modification of the metric is also studied and we find that a region of this spacetime behaves like a time-machine where CTCs appear after a certain instant of time.  相似文献   

6.
We obtain a lower bound on the spacetime-weighted average of the energy density for the scalar field in four-dimensional flat spacetime. The bound takes the form of a quantum inequality. The inequality does not rely on the quantum state and its form is only related to the weights, namely the spacetime sampling functions which are assumed to be smooth, positive and compactly supported. It is found that the inequality is just equal to the temporal quantum energy inequality. When the characteristic length of the temporal sampling function tends to zero, the lower bound becomes divergent. This is consistent with the fact that the spatial restriction on negative energy density does not exist in four-dimensional spacetime.  相似文献   

7.
张丽春  李怀繁  赵仁 《物理学报》2010,59(12):8994-8998
在考虑黑洞视界与宇宙视界具有关联性的基础上,证明de Sitter时空的热力学熵为黑洞视界热力学熵与宇宙视界热力学熵之和.给出了考虑两视界具有关联性后的de Sitter时空的热力学特性.研究表明,de Sitter时空的能量上限为纯de Sitter时空能量,deSitter时空的热容量是负的,de Sitter时空一般是量子力学不稳定的.  相似文献   

8.
Considering the relationship between the black hole horizon and the cosmological horizon, the thermodynamic property of the charged de Sitter spacetime is discussed. The effective temperature and energy are obtained. The result shows that the upper limit of the energy in the charged de Sitter spacetime is just the energy in the pure de Sitter spacetime. The thermal capacity of the charged de Sitter spacetime is positive, thus satisfying the thermal stability condition.  相似文献   

9.
A new class of solutions which yields an (n + 1)-dimensional spacetime with a longitudinal nonlinear magnetic field is introduced. These spacetimes have no curvature singularity and no horizon, and the magnetic field is non singular in the whole spacetime. They may be interpreted as traversable wormholes which could be supported by matter not violating the weak energy conditions. We generalize this class of solutions to the case of rotating solutions and show that the rotating wormhole solutions have a net electric charge which is proportional to the magnitude of the rotation parameter, while the static wormhole has no net electric charge. Finally, we use the counterterm method and compute the conserved quantities of these spacetimes.  相似文献   

10.
In this paper we explore a solenoid configuration involving a magnetic universe solution embedded in an empty Anti-de Sitter (AdS) spacetime. This requires a non-trivial surface current at the interface between the two spacetimes, which can be provided by a charged scalar field. When the interface is taken to the AdS boundary, we recover the full AdS–Melvin spacetime. The stability of the AdS–Melvin solution is also studied by computing the gravitational free energy from the Euclidean action.  相似文献   

11.
The ground-state energy in the two-phase hybrid chiral fermion-bag model involving boson-fermion interaction is studied in (1+1)-dimensional spacetime. A procedure for renormalizing the divergent energy of the fermion sea is proposed. The procedure is based on the isolation of singular terms and the subsequent absorption of these divergences in the redefined parameters of the input Lagrangian.  相似文献   

12.
The formation of energetic rings of matter in a Kerr spacetime with an outward pointing acceleration field does not appear to have previously been noted as a relativistic effect. In this paper we show that such rings are a gravimagneto effect with no Newtonian analog, and that they do not occur in the static limit. The energy efficiency of these rings can (depending of the strength of the acceleration field) be much greater than that of Keplerian disks. Counter-intuitively these rings rotate in a direction opposite to that of compact star about which they form. The size and energy efficiency of the rings depend on the fundamental parameters of the spacetime as well as the strength the acceleration field.  相似文献   

13.
We give an example of a spacetime having an infinite thin rotating cylindrical shell constituted by a charged perfect fluid as a source. As the interior of the shell the Bonnor–Melvin universe is considered, while its exterior is represented by the Datta–Raychaudhuri spacetime. We discuss the energy conditions and we show that our spacetime contains closed timelike curves. Trajectories of charged test particles both inside and outside the cylinder are also examined. An expression for the angular velocity of a circular motion inside the cylinder is given.  相似文献   

14.
We establish the result that the standard Boulware–Deser spacetime can radiate. This allows us to model the dynamics of a spherically symmetric radiating dynamical star in five-dimensional Einstein–Gauss–Bonnet gravity with three spacetime regions. The local internal region is a two-component system consisting of standard pressure-free, null radiation and an additional string fluid with energy density and nonzero pressure obeying all physically realistic energy conditions. The middle region is purely radiative which matches to a third region which is the vacuum Boulware–Deser exterior. Our approach allows for all three spacetime regions to be modeled by the same class of metric functions. A large family of solutions to the field equations are presented for various realistic equations of state. A comparison of our solutions with earlier well known results is undertaken and we show that Einstein–Gauss–Bonnet analogues of these solutions, including those of Husain, are contained in our family. We also generalise our results to higher dimensions.  相似文献   

15.
A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc.  相似文献   

16.
The asymptotic properties of the solution to the Klein–Gordon equation will be studied in the Schwarzschild spacetime background. The results are based on the global Sobolev-type inequalities and the generalized energy estimates.  相似文献   

17.
A nonlinear generalisation of Schrodinger’s equation is obtained using information-theoretic arguments. The nonlinearities are controlled by an intrinsic length scale and involve derivatives to all orders thus making the equation mildly nonlocal. The nonlinear equation is homogeneous, separable, conserves probability, but is not invariant under spacetime symmetries. Spacetime symmetries are recovered when a dimensionless parameter is tuned to vanish, whereby linearity is simultaneously established and the length scale becomes hidden. It is thus suggested that if, in the search for a more basic foundation for Nature’s Laws, an inference principle is given precedence over symmetry requirements, then the symmetries of spacetime and the linearity of quantum theory might both be emergent properties that are intrinsically linked. Supporting arguments are provided for this point of view and some testable phenomenological consequences are highlighted. The generalised Klien-Gordon and Dirac equations are also studied, leading to the suggestion that nonlinear quantum dynamics with intrinsically broken spacetime symmetries might be relevant to understanding the problem of neutrino mass (lessness) and oscillations: among other observations, this approach hints at the existence of a hidden discrete family symmetry in the Standard Model of particle physics.  相似文献   

18.
In this paper, we study the influence of the Aharonov–Casher effect [Y. Aharonov, A. Casher, Phys. Rev. Lett. 53 (1984) 319] on the Dirac oscillator in three different scenarios of general relativity: the Minkowski spacetime, the cosmic string spacetime and the cosmic dislocation spacetime. In this way, we solve the Dirac equation and obtain the energy levels for bound states and the Dirac spinors for positive-energy solutions. We show that the relativistic energy levels depend on the Aharonov–Casher geometric phase. We also discuss the influence of curvature and torsion on the relativistic energy levels and the Dirac spinors due to the topology of the cosmic string and cosmic dislocation spacetimes.  相似文献   

19.
Electrically charged systems bound by a strong gravitational force can sustain a huge amount of electric charge (up to 1020 C) against Coulomb repulsion. General relativistically such systems form a stable hydrostatic configuration both in the non-rotating and rotating cases. Here we study the effects of electric charge (electric energy density) on the spacetime outside a rotating electrically charged system bound by a strong gravitational force. In particular we investigate the effect of charge density on frame-dragging of spacetime in the exterior region. Using the coupled Einstein-Maxwell equations it is found that in the slow rotation approximation charge accumulation not only acts like an additional mass, thus modifying the spherically symmetric part of the spacetime, the electric charge also contributes directly to the dragging of spacetime. A modified Lense-Thirring formula for the spacetime frame dragging frequency is obtained and its implication for rotating charged compact stars is discussed.  相似文献   

20.
In this paper, we discuss the geodesic motions of test particles in the intermediate vacuum between a monopolar core and an exterior shell of dipoles, quadrupoles and octopoles. The radii of the innermost stable circular orbits at the equatorial plane depend only on the quadrupoles. A given oblate quadrupolar leads to the existence of two innermost stable circular orbits, and their radii are larger than in the Schwarzschild spacetime. However, a given prolate quadrupolar corresponds to only one innermost stable circular orbit, and its radius is smaller than in the Schwarzschild spacetime. As to the general geodesic orbits, one of the recently developed extended phase space fourth order explicit symplectic-like methods is efficiently applicable to them although the Hamiltonian of the relativistic core–shell system is not separable. With the aid of both this fast integrator without secular growth in the energy errors and gauge invariant chaotic indicators, the effect of these shell multipoles on the geodesic dynamics of order and chaos is estimated numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号