首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Factor X is a blood clotting protein that associates at membrane surfaces to become activated during the coagulation cascade. A molecular level understanding of the protein-membrane phospholipid interactions has not been reached, although it is thought that the protein binds to phospholipids in the presence of calcium through a bridge with the Gla (gamma-carboxyglutamic acid) domain on the protein. In this work, phospholipid Langmuir monolayers have been utilized as model membranes to study factor X association with phospholipid membrane components. Surface pressure measurements indicate that subphase addition of sodium, magnesium, and calcium ions enhances protein penetration of the lipid monolayer, with the largest association found with calcium ions in the subphase. Fluorescence microscopy images collected after protein penetration of lipid monolayers indicate monolayer condensation in the presence of sodium and magnesium ions. Aggregation of lipid domains is induced when calcium is in the subphase, indicating binding-induced flocculation of surface lipid aggregates. Calcium binding to factor X likely causes a conformational change which allows protein-membrane interaction via hydrophobic association with lipid molecules.  相似文献   

2.
《Supramolecular Science》1998,5(5-6):795-802
C-reactive protein (CRP) is an acute phase reactive protein, which has been shown to specifically bind to phosphorylcholine (PC) and phosphorylethanoamine (PE) moieties in the presence of calcium. In order to investigate the effect of steric hindrance on the specific binding of CRP to membranes, we designed and synthesized six phospholipids, each containing a long-arm spacer of 3, 6 or 8 atoms between the head group and hydrophobic tail. By mixing synthesized lipids and natural lipids the ligand-containing monolayers were prepared, which have PC or PE groups protruding out of the membrane surface. To characterize of the synthesized phospholipids, the thickness of the lipid monolayers was measured by surface plasmon resonance (SPR) technique, the phase behavior of the lipid monolayer at air/water interface was studied by pressure–area analysis, and the specific binding of rabbit C-reactive protein to the synthesized lipid containing membranes was studied by imaging ellipsometry.  相似文献   

3.
The interaction between dextran sulfate (DS) with zwitterionic dipalmitoylphosphatidylcholine (DPPC) and negatively charged dipalmitoylphosphatidic acid monolayers at different surface pressures at air-liquid and liquid-liquid interfaces was studied using Langmuir-Blodgett (LB) and electrochemical techniques. The negatively charged DS can bind to phospholipids via calcium ions. To investigate the mechanism of the adsorption of DS on lipid monolayers, compression isotherms (pi-A) and capacitance-potential curves were measured, and a theoretical model was developed to interpret the capacitance data. The compression of lipid monolayers in the presence of DS led to a more condensed hybrid layer, removing the LE-LC phase transition of DPPC. Lower surface pressures improved the binding of DS on the lipid monolayers via calcium bridges due to the electrostatic attraction. Alternating current voltammetry and cyclic voltammetry were used to monitor the transfer of a cationic beta-blocker (metoprolol) across lipid monolayers in the absence and presence of the polyelectrolyte and to compare with the transfer of the standard probe, tetraethylammonium cation. Results showed a strong dependence on (i) the surface pressure, (ii) the applied potential, and, (iii) in the case of the hybrid layer, the charge of the phospholipid headgroup. Finally, results were also confirmed by attenuated total reflection Fourier transform infrared spectroscopy, performed after transferring lipid multilayers onto a solid substrate by the LB method.  相似文献   

4.
Lecithin:retinol acyltransferase (LRAT) is a 230 amino acid membrane-associated protein which catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester. A truncated form of LRAT (tLRAT), which contains the residues required for catalysis but which is lacking the N- and C-terminal hydrophobic segments, was produced to study its membrane binding properties. Measurements of the maximum insertion pressure of tLRAT, which is higher than the estimated lateral pressure of membranes, and the positive synergy factor a argue in favor of a strong binding of tLRAT to phospholipid monolayers. Moreover, the binding, secondary structure and orientation of the peptides corresponding to its N- and C-terminal hydrophobic segments of LRAT have been studied by circular dichroism and polarization-modulation infrared reflection absorption spectroscopy in monolayers. The results show that these peptides spontaneously bind to lipid monolayers and adopt an α-helical secondary structure. On the basis of these data, a new membrane topology model of LRAT is proposed where its N- and C-terminal segments allow to anchor this protein to the lipid bilayer.  相似文献   

5.
Ferritin-directed assembly of binary monolayers of zwitterionic dipalmitoylphosphatidylcholine and cationic dioctadecyldimethylammonium bromide (DOMA) at the interface and surface patterns of ferritin on the monolayers have been investigated using a combination of infrared reflection absorption spectroscopy, surface plasmon resonance, and atomic force microscopy. Ferritin binding to the binary monolayers at the air-water interface at the surface pressure 30 mN/m, primarily driven by the electrostatic interaction, gives rise to a change in tilt angle of hydrocarbon chains from 15 degrees +/- 1 degrees to 10 degrees +/- 1 degrees with respect to the normal of the monolayer at the mole fraction of DOMA (XDOMA) of 0.1. The chains at XDOMA = 0.3 are oriented vertical to the water surface before and after protein binding. A new mechanism for protein binding to the binary monolayers is proposed. The secondary structures of the adsorbed ferritin are prevented from changing to some extent due to the existence of the monolayers. The amounts of the bound protein on the monolayers at the air-water interface are increased in comparison with those on the pre-immobilized monolayers at low XDOMA. The increased amounts and different patterns of the adsorbed protein at the monolayers are mostly attributed to the formation of multiple binding sites available for ferritin, which is due to the lateral reorganization of the lipid components in the monolayers induced by the protein in the subphase. The created multiple binding sites on the monolayer surfaces through the protein-directed assembly can be preserved for subsequent protein binding.  相似文献   

6.
Anodic aluminum oxide (AAO) substrates with aligned, cylindrical, non-intersecting pores with diameters of 75 nm and depths of 3.5 or 10 μm were functionalized with lipid monolayers harboring different receptor lipids. AAO was first functionalized with dodecyl-trichlorosilane, followed by fusion of small unilamellar vesicles (SUVs) forming a lipid monolayer. The SUVs' lipid composition was transferred onto the AAO surface, allowing us to control the surface receptor density. Owing to the optical transparency of the AAO, the overall vesicle spreading process and subsequent protein binding to the receptor-doped lipid monolayers could be investigated in situ by optical waveguide spectroscopy (OWS). SUV spreading occurred at the pore-rim interface, followed by lateral diffusion of lipids within the pore-interior surface until homogeneous coverage was achieved with a lipid monolayer. The functionality of the system was demonstrated through streptavidin binding onto a biotin-DOPE containing POPC membrane, showing maximum protein coverage at 10 mol% of biotin-DOPE. The system enabled us to monitor in real-time the selective extraction of two histidine-tagged proteins, PIGEA14 (14 kDa) and ezrin (70 kDa), directly from cell lysate solutions using a DOGS-NTA(Ni)/DOPC (1:9) membrane. The purification process including protein binding and elution was monitored by OWS and confirmed by SDS-PAGE.  相似文献   

7.
The proximal region of the angiotensin II receptor (AT1A) carboxyl-terminus (known as helix VIII) is important for receptor function. In this study, we used surface plasmon resonance (SPR) to examine the interaction of helix VIII-derived peptides with three model lipid membranes. The membrane-binding properties of these synthetic peptides, as well as a series of peptide analogues with modified amino acid sequences, could be explained by both amino acid sequence and kinetic binding data by SPR. The helix VIII peptides showed a higher affinity for lipid membranes that contained negatively charged phospholipid, rather than zwitterionic phospholipid. The findings of an SPR study may be useful for estimating the cooperative binding of intracellular receptor domains with G proteins and the components of the lipid bilayer.  相似文献   

8.
Factor VIII is a critical member of the blood coagulation cascade. It binds to the membrane surfaces of activated platelets at the site of vascular injury via a highly specific interaction between factor VIII's carboxy-terminal C2 domain and their phosphatidylserine-rich lipid bilayer. We have identified small-molecule inhibitors of factor VIII's membrane binding activity that have IC50 values as low as 2.5 microM. This interaction is approximately 10(3)-fold tighter than that of free o-phospho-L-serine. These compounds also inhibit factor VIII-dependent activation of factor X, indicating that disruption of membrane lipid binding leads to inhibition of the intrinsic coagulation pathway. The tightest binding inhibitor is specific and does not prevent membrane binding by the closely related coagulation factor V. These results indicate that this and related compounds may be used as leads to develop novel antithrombotic agents.  相似文献   

9.
The association of neuropeptide Y (NPY) at the air/water interface and with phospholipid monolayers on water as subphase has been investigated using external infrared reflection absorption spectroscopy (IRRAS). Studies of the conformation and orientation of NPY suggest that it adopts an alpha-helical structure and is oriented parallel to the air/water interface in neat peptide monolayers. Both secondary structure and orientation are preserved in mixed lipid/NPY monolayers. Comparison of NPY associated with zwitterionic DPPC and with anionic DMPS suggests that electrostatic attraction plays a major role for peptide binding to the membrane surface.  相似文献   

10.
Protein imprinting leading to enhanced rebinding of ferritin to ternary lipid monolayers is demonstrated using a quartz crystal microbalance. Monolayers consisting of cationic dioctadecyldimethylammonium bromide, non-ionic methyl stearate, and poly(ethylene glycol) bearing phospholipids were imprinted with ferritin at the air/water interface of a Langmuir-Blodgett trough and transferred hydrated to hydrophobic substrates for study. This immobilization was shown by fluorescence correlation spectroscopy to significantly hinder any further diffusion of lipids, while rebinding studies demonstrated up to a six-fold increase in ferritin adsorption to imprinted versus control monolayers. A diminished rebinding of ferritin to its imprint was observed through pH reduction to below the protein isoelectric point, demonstrating the electrostatic nature of the interaction. Rebinding to films where imprint pockets remained occupied by the template protein was also minimal. Studies with a smaller acidic protein revealed the importance of the steric influence of poly(ethylene glycol) in forming the protein binding pockets, as albumin-imprinted monolayers showed low binding of ferritin, while ferritin-imprinted monolayers readily accommodated albumin. The controllable structure-function relationship and limitations of this system are discussed with respect to the application of protein imprinting in sensor development as well as fundamental studies of proteins at dynamic interfaces.  相似文献   

11.
C-reactive protein (CRP) is a major acute phase reactant in most mammalian species. The structure of CRP has been previously established by crystallography, and the significance of its interaction with lipid membranes is accepted in the literature. However, the nature of the interaction between CRP and phospholipids is not yet well understood. In this paper we use monolayer technique to study the characteristics of the interaction of rabbit C-reactive protein (rCRP) with the phospholipid membranes. The results show that rCRP is surface active and can spontaneously insert into the lipid monolayers. The critical pressure for rCRP inserting into the phospholipid monolayers is about 34.5 mN/m, which is not sensitive to the types of the lipid headgroups and the presence of calcium ions in the subphase. The findings of this paper may provide a clue to the further understanding of the mechanism of the interactions between rCRP and the biological membranes.  相似文献   

12.
Multilayers consisting of negatively charged phospholipid DMPA and myelin basic protein (MBP) were assembled by Langmuir-Blodgett deposition of floating Langmuir monolayers from the air/water interface to solid substrates. Protein/lipid samples were obtained by binding MBP from the aqueous subphase to the phospholipid monolayers before deposition. The vertical organization of these model membranes (i.e., with organization perpendicular to the substrate surface) was investigated in detail by neutron reflectivity measurements, and the internal distribution of water molecules was determined from the change of contrast after in-situ H2O/D2O exchange. The multilayers were well ordered, with repeating lipid bilayers as fundamental structural unit. MBP was inserted in between adjacent lipid headgroups, such as in the natural myelin membrane. Water molecules in the multilayers were present mainly in the lipid headgroup and protein slab. On exposition of the pure lipid multilayers to a dry atmosphere, a reduction of the bilayer spacing was determined, whereas the global lamellar order was not affected. In contrast, drying of the protein/lipid multilayers induced degradation of the laminar order. The data demonstrate that ordered Langmuir-Blodgett multilayers are versatile model systems for studying how competing interactions between lipid, protein, water, and ions affect the global organization of such multilamellar lipid/protein assemblies. Here, the water molecules were found to be a necessary mediator to maintain the laminar order in a multilayer from DMPA and myelin basic protein.  相似文献   

13.
The kinetics and the thermodynamics of melanin concentrating hormone (MCH) adsorption, penetration, and mixing with membrane components are reported. MCH behaved as a surface active peptide, forming stable monolayers at a lipid-free air-water interface, with an equilibrium spreading pressure, a collapse pressure, and a minimal molecular area of 11 mN/m, 13 mN/m, and 140 A (2), respectively. Additional peptide interfacial stabilization was achieved in the presence of lipids, as evidenced by the expansion observed at pi > pi sp in monolayers containing premixtures of MCH with zwitterionic or charged lipids. The MCH-monolayer association and dissociation rate constants were 9.52 x 10 (-4) microM (-1) min (-1) and 8.83 x 10 (-4) min (-1), respectively. The binding of MCH to the dpPC-water interface had a K d = 930 nM at 10 mN/m. MCH penetration in lipid monolayers occurred even up to pi cutoff = 29-32 mN/m. The interaction stability, binding orientation, and miscibility of MCH in monolayers depended on the lipid type, the MCH molar fraction in the mixture, and the molecular packing of the monolayer. This predicted its heterogeneous distribution between different self-separated membrane domains. Our results demonstrated the ability of MCH to incorporate itself into biomembranes and supports the possibility that MCH affects the activity of mechanosensitive membrane proteins through mechanisms unrelated with binding to specific receptors.  相似文献   

14.
Noncovalent association of Ca2+-loaded calmodulin with a target peptide melittin was studied by electrospray ionization mass spectrometry (ESI-MS). ESI-MS does not reveal any binding of the apocalmodulin to the melittin. Partial loading of calmodulin with calcium leads to weak association with melittin. Upon binding of two calcium ions to the protein, changes in the conformation of calmodulin occur; these changes are sufficient to promote binding of melittin. Saturation of the protein with Ca2+ (a distribution of up to seven calcium ions is detected) induces a large increase of the binding to melittin. The stoichiometry of peptide binding to calmodulin is 1:1.  相似文献   

15.
The interaction of hybrid lipid/gramicidin A (gA) monolayers with dextran sulfate (DS) and the effect of this interaction on ion transfer at a liquid-liquid interface is reported. The interfacial and physicochemical properties are studied with Langmuir-Blodgett (LB) and electrochemical techniques. The results obtained from compression isotherms demonstrate that the interactions between the different species in the hybrid monolayer vary according to the chemical nature of the lipid (hydrocarbon region and charge of the head group). Interfacial capacitance measured with AC voltammetry indicates that the DS chains form a rather flat and compact layer when adsorbed to either zwitterionic or negatively charged phospholipid monolayers, and that calcium, even at low concentrations, interacts with the monolayers. These results are successfully described by a model based on the solution of the Poisson-Boltzmann equation in the interfacial region. Ion transfer and interactions with the lipid/gA/DS-modified monolayers were also studied with electrochemical techniques. Admittance data show that although the studied ions are not using gA channels for the transfer through the lipid membranes, the incorporation of gA in the lipid domain and the adsorption of DS at the interface have a significant effect on ion transfer across the monolayers. This effect can be explained as a consequence of the modified surface charge and of the compactness of the lipid domain due to its interaction with gA and to calcium and DS adsorption at the interface. The ion-transfer rate, therefore, depends on the composition of the monolayer and the chemical nature of the ion.  相似文献   

16.
An investigation of the incorporation of antibody in lipid films of a composition that has been used for biosensor preparation is reported. IgG that is incorporated into lipid monolayers prepared from 7:3 mixtures of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidic acid is edge-active, and enters and penetrates the fluid region of the mixed-phase system when monolayers are held at low pressure (< 20 mN/m). It was found that there is an “exclusion pressure” observed in pressure-area (π-A) curves that are collected for monolayers that contain antibody. This term refers to a specific threshold of lateral pressure (which is reached by monolayer compression) that can cause explusion of antibody from the interior of a membrane. Microscopic images of monolayers containing the fluorescent phospholipid nitrobenzoxadiazole dipalmitoyl phosphatidylethanolamine (NBD-PE), or antibody labeled with tetramethylrhodamine isothiocyanate (TRITC), were used to determine the structure of membranes, and the location of effects on structure caused by IgG. Ellipsometric measurements of lipid monolayers that were cast onto silicon wafers by the LangmuirBlodgett method were used to study the thickness of monolayers and to investigate the structural changes that occurred at the “exclusion pressure.” Both the use of fluorescent antigen and ellipsometry indicated that antibody binding activity was present and was dependent on compression pressure. The effects of pH and ionic strength of subphase, antibody concentration, incubation time, and lateral pressure have been examined. The results may indicate the conditions that can be used to improve the incorporation of active IgG for preparation of biosensors that are based on lipid membranes.  相似文献   

17.
《Supramolecular Science》1998,5(5-6):803-808
The adsorption of 80S ribosome from rat liver to the surface of lipid monolayers at the air/water interface was examined by electron microscopy (EM) using a negative staining method. The results showed that, a large number of 80S ribosomes can be adsorbed to the lipid monolayers containing positively charged octadecylamine (SA), whereas the adsorption of ribosomes to the surface of neutral or negatively charged lipid monolayers was negligible. There existed a proper ratio of SA to complemented neutral lipids which facilitated the maximum binding of ribosomes. Increasing the subphase pH value will enhance the adsorption of ribosome, but when raising the subphase concentrations of K+, Mg2+ and glycerol, the adsorption of ribosomes can be weakened, suggesting that the driving forces of the adsorption mainly come from the electrostatic interactions between the ribosome and the lipids. The important characteristics of such interactions between the 80S rat liver ribosomes and the lipid membranes, as revealed by this new technology, which may help in the further understanding of the protein biosynthesis is discussed.  相似文献   

18.
This article reviews the authors' experiments on calcium oxalate growth at lipid monolayers. Calcium oxalate is the principal mineral component of most urinary stones. Membrane constituents associate either actively or passively with calcific minerals during stone formation, and it has been proposed that lipid assemblies play a significant role, possibly providing sites for the initial nucleation event. Langmuir monolayers allow systematic studies of the heterogeneous precipitation of calcium oxalate at lipid assemblies. The influences of the chemical identity of the lipid headgroup, the organization of the monolayer, and the presence of heterogeneities and phase boundaries within the monolayer have been explored.  相似文献   

19.
Bovine testis hyaluronidase (btHyal) had been shown to have direct effects on cancer cells and to be a useful adjuvant in several medicines. Furthermore this enzyme had been found to be membrane-associated. Thus, in this work, the interactions between btHyal and membranes were analyzed by using lipid monolayers at the air–water interface as a biomimetic membrane system. This allowed us to define the btHyal interactions with two residues of hyaluronic acid (a btHyal substrate), GlcNAc and carboxylic group, which are present in cholesteryl-triethoxy-N-acetylglucosamine (Chol-E3-GlcNAc) and in DPPS, respectively. btHyal bound preferentially Chol-E3-GlcNAc monolayers and showed a decreasing affinity for Chol-E3-GlcNAc-DPPC monolayers containing decreasing amount of glycolipid, suggesting a crucial role of the glycolipid GlcNAc. Furthermore the significant btHyal binding to DPPS was not affected by the presence of free GlcNAc in the subphase. These results and the absence of significant binding of btHyal to pure DPPC monolayer suggest that the protein interacts with the lipid monolayer by mimicking the enzyme–substrate interactions or by electrostatic interactions.  相似文献   

20.
The propensity of a matrix protein from an enveloped virus of the Mononegavirales family to associate with lipids representative of the viral envelope has been determined using label-free methods, including tensiometry and Brewster angle microscopy on lipid films at the air-water interface and atomic force microscopy on monolayers transferred to OTS-treated silicon wafers. This has enabled factors that influence the disposition of the protein with respect to the lipid interface to be characterized. In the absence of sphingomyelin, respiratory syncytial virus matrix protein penetrates monolayers composed of mixtures of phosphocholines with phosphoethanolamines or cholesterol at the air-water interface. In ternary mixtures composed of sphingomyelin, 1,2-dioleoyl-sn-glycero-3-phosphocholine, and cholesterol, the protein exhibits two separate behaviors: (1) peripheral association with the surface of sphingomyelin-rich domains and (2) penetration of sphingomyelin-poor domains. Prolonged incubation of the protein with mixtures of phosphocholines and phosphoethanolamines leads to the formation of helical protein assemblies of uniform diameter that demonstrate an inherent propensity of the protein to assemble into a filamentous form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号