首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Trialkyl imido niobium and tantalum complexes [MR(3)(NtBu)] (M = Nb, R = Me 2, CH(2)CMe(3)3, CH(2)CMe(2)Ph 4, CH(2)SiMe(3)5; M = Ta, R = Me 6, CH(2)CMe(2)Ph 7, CH(2)SiMe(3)8) have been prepared by treatment of solutions containing [MCl(3)(NtBu)py(2)] (M = Nb 1a, Ta 1b) with three equivalents of magnesium reagent. By an unexpected hydrolysis reaction of the tris-trimethylsilylmethyl imido tantalum compound 8a, a μ-oxo derivative [(Me(3)SiCH(2)O)(Me(3)SiCH(2))(3)Ta(μ-O)Ta(CH(2)SiMe(3))(2)(NtBu)] (8a) was formed and its structure was studied by X-ray diffraction methods. Reactions of trialkyl imido compounds with two equivalents of isocyanide 2,6-Me(2)C(6)H(3)NC result in the migration of two alkyl groups, leading to the formation of a series of alkyl imido bisiminoacyl derivatives [MR(NtBu){C(R)NAr}(2)] (Ar = 2,6-Me(2)C(6)H(3); M = Nb, R = Me 9, CH(2)CMe(3)10, CH(2)CMe(2)Ph 11, CH(2)SiMe(3)12, CH(2)Ph 13; M = Ta, R = CH(2)CMe(3)14, CH(2)CMe(2)Ph 15, CH(2)SiMe(3)16). All compounds were studied by IR and NMR ((1)H, (13)C and (15)N) spectroscopy.  相似文献   

2.
Reaction of [Ti(NR)Cl2(py)3] (R=tBu or 2,6-iPr2C6H3) with K(2)[COT] (COT=C8H8) or Li2[COT'] (COT'=1,4-C8H6(SiMe3)2) gave the monomeric complexes [Ti(NR)(eta8-COT)] or [Ti(NR)(eta8-COT')], respectively. The pseudo-two coordinate, "pogo stick" geometry for these complexes is unique in both early transition-metal and cyclooctatetraenyl ligand chemistry. In contrast, reaction of [Ti(N-2,6-Me2C6H3)Cl2(py)3] with K2[COT] gave the mu-imido-bridged dimer [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2]. It appears that as the steric bulk of the imido and C8 ring substituents are decreased, dimerisation becomes more favourable. Aryl imido COT complexes were also prepared by imido ligand exchange reactions between anilines and [Ti(NtBu)(eta(8)-COT)] or [Ti(NtBu)(eta(8)-COT')]. The complexes [Ti(NtBu)(eta(8)-COT)], [Ti(N-2,6-iPr2C6H3)2(eta8-COT)] and [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2] have been crystallographically characterised. The electronic structures of both the monomeric and dimeric complexes have been investigated by using density functional theory (DFT) calculations and gas-phase photoelectron spectroscopy. The most striking aspect of the bonding is that binding to the imido nitrogen atom is primarily through sigma and pi interactions, whereas that to the COT or COT' ring is almost exclusively through delta symmetry orbitals. A DFT-based comparison between the bonding in [Ti(NtBu)(eta8-COT)] and the bonding in the previously reported late transition-metal "pogo stick"complexes [Os(NtBu)(eta6-C6Me6)], [Ir(NtBu)(eta5-C5Me5)] and [Ni(NO)(eta5-C5H5)] has also been undertaken.  相似文献   

3.
The novel 16-electron molybdenum oxo-imido bis(aryloxide) complexes [Mo(NtBu)(O)(2,6-Me2C6H3O)2(py)] (1) and [Mo(NtBu)(O)(2,6-iPr2C6H3O)2(py)] (2) have been prepared by the salt elimination reactions of [Mo(NtBu)(O)Cl2(DME)] with the appropriate lithium aryloxide and from the cycloaddition reactions of tert-butyl isocyanate with the appropriate molybdenum dioxo bis(aryloxide) complex [Mo(O)2(OAr)2(py)n]. Complexes 1 and 2 are the first isolable and crystallographically characterized molybdenum oxo-imido aryloxide complexes. The geometry around the metal in complexes 1 and 2 is best described as a distorted trigonal bipyramid, with the imido and pyridine ligands occupying the axial positions and the oxo and aryloxide ligands in the equatorial plane. X-ray and IR data have confirmed that the imido ligand is the dominant pi donor in the complexes, resulting in an Mo-O bond order of less than 2.5. Reaction of [Mo(NtBu)(O)Cl2(DME)] with Li(OCH2tBu) instead gave the novel complex [Mo(NtBu)(OCH2tBu)3Cl(py)] (3).  相似文献   

4.
Wang H  Wang Y  Chan HS  Xie Z 《Inorganic chemistry》2006,45(14):5675-5683
Reaction of [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]TiCl(NMe2) (1) with 1 equiv of PhCH2K, MeMgBr, or Me3SiCH2Li gave corresponding organotitanium alkyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(R)(NMe2) (R = CH2Ph (2), CH2SiMe3 (4), or Me (5)) in good yields. Treatment of 1 with 1 equiv of n-BuLi afforded the decomposition product {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe)(mu:sigma-CH2NMe) (3). Complex 5 slowly decomposed to generate a mixed-valence dinuclear species {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe2)(mu:sigma-CH2NMe) (6). Complex 1 reacted with 1 equiv of PhNCO or 2,6-Me2C6H3NC to afford the corresponding monoinsertion product [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-OC(NMe2)NPh] (7) or [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-C(NMe2)=N(2,6-Me2C6H3)] (8). Reaction of 4 or 5 with 1 equiv of R'NC gave the titanium eta(2)-iminoacyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(NMe2)[eta(2)-C(R)=N(R')] (R = CH2SiMe3, R' = 2,6-Me2C6H3 (9) or tBu (10); R = Me, R' = 2,6-Me2C6H3 (11) or tBu (12)). The results indicated that the unsaturated molecules inserted into the Ti-N bond only in the absence of the Ti-C(alkyl) bond and that the Ti-C(cage) bond remained intact. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Molecular structures of 2, 3, 6-8, and 10-12 were further confirmed by single-crystal X-ray analyses.  相似文献   

5.
Reaction of the diamidozirconium complex [Zr(N2(TBS)Npy)(NMe2)2] (1) (N2(TBS)Npy = CH3C(C5H4N)(CH2NSiMe2tBu)2) or the diamidohafnium complex [Hf(N2(TBS)Npy)(NMe2)2] (2) with one molar equiv. of 1-aminopyridinium triflate in the presence of one equiv. of pyridine gave the corresponding (1-pyridinio)imido complexes [Zr(N2(TBS)Npy)(=N-NC5H5)(OTf)(py)] (3) and [Hf(N2(TBS)Npy)(=N-NC5H5)(OTf)(py)] (4). These were converted to the acetylide complexes [Zr(N2(TBS)Npy)(=N-NC5H5)(CCPh)(py)] (5) and [Hf(N2(TBS)Npy)(=N-NC5H5)(CCPh)(py)] (6) by reaction with lithium phenylacetylide and substitution of the triflato ligand. Upon reaction of 3 and 4 with one molar equivalent of R-NC (R = tBu, Cy, 2,6-xyl), N-N bond cleavage in the (1-pyridinio)imido unit took place and the respective carbodiimido complexes [M(N2(TBS)Npy](N=C=NR)(OTf)(py)] (7-12) were formed instantaneously. A similar type of reaction with CO gave the isocyanato complex [Zr(N2(TBS)Npy](NCO)(OTf)(py)] (13). Finally, the abstraction of the pyridine ligand in compounds 3 and 4 with B(C6F5)3 led to the formation of the triflato-bridged dinuclear complexes [Zr(N2(TBS)Npy)(=N-NC5H5)(OTf)]2 (14) and [Hf(N2(TBS)Npy)(=N-NC5H5)(OTf)]2 (15).  相似文献   

6.
The tailoring reaction of the two adjacent nitrile ligands in cis-[PtCl(2)(RCN)(2)] (R = Me, Et, CH(2)Ph, Ph) and [Pt(tmeda)(EtCN)(2)][SO(3)CF(3)](2) (8.(OTf)(2); tmeda = N,N,N',N'-tetramethylethylenediamine) upon their interplay with N,N'-diphenylguanidine (DPG; NH=C(NHPh)(2)), in a 1:2 molar ratio gives the 1,3,5-triazapentadiene complexes [PtCl(2){NHC(R)NHC(R)=NH}] (1-4) and [Pt(tmeda){NHC(Et)NHC(Et)NH}][SO(3)CF(3)](2) (10.(OTf)(2)), respectively. In contrast to the reaction of 8.(OTf)(2) with NH=C(NHPh)(2), interaction of 8.(OTf)(2) with excess gaseous NH(3) leads to formation of the platinum(II) bis(amidine) complex cis-[Pt(tmeda){NH=C(NH(2))Et}(2)][SO(3)CF(3)](2) (9.(OTf)(2)). Treatment of trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) with 2 equiv of NH=C(NHPh)(2) in EtCN (R = Et) and CH(2)Cl(2) (R = CH(2)Ph, Ph) solutions at 20-25 degrees C leads to [PtCl{NH=C(R)NC(NHPh)=NPh}(RCN)] (11-13). When any of the trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) complexes reacts in the corresponding nitrile RCN with 4 equiv of DPG at prolonged reaction time (75 degrees C, 1-2 days), complexes containing two bidentate 1,3,5-triazapentadiene ligands, i.e. [Pt{NH=C(R)NC(NHPh)=NPh}(2)] (14-16), are formed. Complexes 14-16 exhibit strong phosphorescence in the solid state, with quantum yields (peak wavelengths) of 0.39 (530 nm), 0.61 (460 nm), and 0.74 (530 nm), respectively. The formulation of the obtained complexes was supported by satisfactory C, H, and N elemental analyses, in agreement with FAB-MS, ESI-MS, IR, and (1)H and (13)C{(1)H} NMR spectra. The structures of 1, 2, 4, 11, 13, 14, 9.(picrate)(2), and 10.(picrate)(2) were determined by single-crystal X-ray diffraction.  相似文献   

7.
The molybdenum oxo-imido complex, [Mo(O)(NtBu)Cl2(dme)] (1), was obtained from the reaction between [MoO2Cl2(dme)] and [Mo(NtBu)2Cl2(dme)]. Reactions between [Mo(O)(NR)Cl2(dme)] (where R = tBu or 2,6-iPr2C6H3) and the disodium Schiff base compounds Na(2)(3,5-tBu2)2salen, Na(2)(3,5-tBu2)2salpen, and Na(2)(7-Me)2salen afforded the first oxo-imido transition metal Schiff base complexes: [Mo(O)(NtBu)[(3,5-tBu2)2salen]] (2), [Mo(O)(NtBu)[(3,5-tBu2)2salpen]] (3), and [Mo(O)(N-2,6-iPr2C6H3)[(7-Me)2salen]] (4), respectively. The compounds [Mo(NtBu)2[(3,5-tBu2)2salpen]] (5) from [Mo(NtBu)2(NHtBu)2] and [Mo(N-2,6-iPr2C6H3)(2)[(7-Me)2salen]](6) from [Mo(N-2,6-iPr2C6H3)(2)(NHtBu)2] (7) are also reported. Compounds 1-7 were characterized by NMR, IR, and FAB mass spectroscopy while compounds 3, 4, and 5 were additionally characterized by X-ray crystallography. In conjunction with tBuOOH as oxidant, compound 3 is a catalyst for the oxidation of benzyl alcohol to benzaldehyde and cis-cyclooctene and 1-octene to the corresponding epoxides.  相似文献   

8.
The Vaska-type iridium(I) complex [IrCl(CO){PPh(2)(2-MeC(6)H(4))}(2)] (1), characterized by an X-ray diffraction study, was obtained from iridium(III) chloride hydrate and PPh(2)(2,6-MeRC(6)H(3)) with R=H in DMF, whereas for R=Me, activation of two ortho-methyl groups resulted in the biscyclometalated iridium(III) compound [IrCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)] (2). Conversely, for R=Me the iridium(I) compound [IrCl(CO){PPh(2)(2,6-Me(2)C(6)H(3))}(2)] (3) can be obtained by treatment of [IrCl(COE)(2)](2) (COE=cyclooctene) with carbon monoxide and the phosphane in acetonitrile. Compound 3 in CH(2)Cl(2) undergoes intramolecular C-H oxidative addition, affording the cyclometalated hydride iridium(III) species [IrHCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}] (4). Treatment of 2 with Na[BAr(f) (4)] (Ar(f)=3,5-C(6)H(3)(CF(3))(2)) gives the fluxional cationic 16-electron complex [Ir(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)][BAr(f) (4)] (5), which reversibly reacts with dihydrogen to afford the delta-agostic complex [IrH(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}][BAr(f)(4)] (6), through cleavage of an Ir-C bond. This species can also be formed by treatment of 4 with Na[BAr(f)(4)] or of 2 with Na[BAr(f)(4)] through C-H oxidative addition of one ortho-methyl group, via a transient 14-electron iridium(I) complex. Heating of the coordinatively unsaturated biscyclometalated species 5 in toluene gives the trans-dihydride iridium(III) complex [IrH(2)(CO){PPh(2)(2,6-MeC(6)H(3)CH=CHC(6)H(3)Me-2,6)PPh(2)}][BAr(f) (4)] (7), containing a trans-stilbene-type terdentate ligand, as result of a dehydrogenative carbon-carbon double bond coupling reaction, possibly through an iridium carbene species.  相似文献   

9.
In combination with EtAlCl(2) (Mo : Al = 1 : 15) the imido complexes [MoCl(2)(NR)(NR')(dme)] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (1); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (3); R = R' = Bu(t) (4); dme = 1,2-dimethoxyethane) and [Mo(NHBu(t))(2)(NR)(2)] (R = 2,6-Pr(i)(2)-C(6)H(3) (5); R = Bu(t) (6)) each show moderate TON, activity, and selectivity for the catalytic dimerisation of ethylene, which is influenced by the nature of the imido substituents. In contrast, the productivity of [MoCl(2)(NPh)(2)(dme)] (2) is low and polymerisation is favoured over dimerisation. Catalysis initiated by complexes 1-4 in combination with MeAlCl(2) (Mo : Al = 1 : 15) exhibits a significantly lower productivity. Reaction of complex 5 with EtAlCl(2) (2 equiv.) gives rise to a mixture of products, while addition of MeAlCl(2) affords [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. Treatment of 6 with RAlCl(2) (2 equiv.) (R = Me, Et) yields [Mo({μ-N-Bu(t)}AlCl(2))(2)] (7) in both cases. Imido derivatives 1 and 3 react with Me(3)Al and MeAlCl(2) to form the bimetallic complexes [MoMe(2)(N{R}AlMe(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (8); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (10)) and [MoMe(2)(N{R}AlCl(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (9); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (11)), respectively. Exposure of complex 8 to five equivalents of thf or PMe(3) affords the adducts [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)(L)] (L = thf (12); L = PMe(3) (13)), while reaction with NEt(3) (5 equiv.) yields [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. The molecular structures of complexes 5, 9 and 11 have been determined.  相似文献   

10.
The crystalline compounds [Mg(Br)(L)(thf)].0.5Et2O [L = {N(R)C(C6H3Me2-2,6)}2SiR, R = SiMe3] (1), [Mg(L){N=C=C(C(Me)=CH)2CH2}(D)2] [D = NCC6H3Me2-2,6 (2), thf (3)] and [{Mg(L)}2{mu-OSO(CF3)O-[mu}2] (4) were prepared from (a) Si(Br)(R){C(C6H3Me2-2,6)=NR}2 and Mg for (1), (b) [Mg(SiR3)2(thf)2] and 2,6-Me2C6H3CN (5 mol for (2), 3 mol for (3)), and (c) (2) + Me3SiOS(O)2CF3 for (4); a coproduct from (c) is believed to have been the trimethylsilyl ketenimide Me3SiN=C=C{C(Me)=CH}2CH2 (5).  相似文献   

11.
The synthesis, structural characterization, and bonding situation analysis of a novel, all-zinc, hepta-coordinated palladium complex [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) is reported. The reaction of the substitution labile d(10) metal starting complex [Pd(CH(3))(2)(tmeda)] (tmeda = N,N,N',N'-tetramethyl-ethane-1,2-diamine) with stoichiometric amounts of [Zn(2)Cp*(2)] (Cp* = pentamethylcyclopentadienyl) results in the formation of [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) in 35% yield. Compound 1 has been fully characterized by single-crystal X-ray diffraction, (1)H and (13)C NMR spectroscopy, IR spectroscopy, and liquid injection field desorption ionization mass spectrometry. It consists of an unusual [PdZn(7)] metal core and exhibits a terminal {Zn(tmeda)} unit. The bonding situation of 1 with respect to the properties of the three different types of Zn ligands Zn(R,L) (R = CH(3), Cp*; L = tmeda) bonded to the Pd center was studied by density functional theory quantum chemical calculations. The results of energy decomposition and atoms in molecules analysis clearly point out significant differences according to R vs L. While Zn(CH(3)) and ZnCp* can be viewed as 1e donor Zn(I) ligands, {Zn(tmeda)} is best described as a strong 2e Zn(0) donor ligand. Thus, the 18 valence electron complex 1 nicely fits to the family of metal-rich molecules of the general formula [M(ZnR)(a)(GaR)(b)] (a + 2b = n ≥ 8; M = Mo, Ru, Rh; Ni, Pd, Pt; R = Me, Et, Cp*).  相似文献   

12.
The synthesis of the following crystalline complexes is described: [Li(L)(thf)2] (), [Li(L)(tmeda)] (), [MCl2(L)] [M=Al (), Ga ()], [In(Cl)(L)(micro-Cl)2Li(OEt2)2] (), [In(Cl)(L){N(H)C6H3Pri(2)-2,6}] (), [In(L){N(H)C6H3Pri(2)-2,6}2] (), [{In(Cl)(L)(micro-OH)}2] (), [L(Cl)In-In(Cl)(L)] () (the thf-solvate, the solvate-free and the hexane-solvate), [{In(Cl)L}2(micro-S)] () and [InCl2(L)(tmeda)] () ([L]-=[{N(C6H3Pri(2)-2,6)C(H)}2CPh]-). From H(L) (), via Li(L) in Et2O, and thf, tmeda, AlCl3, GaCl3 or InCl3 there was obtained , , , or , respectively in excellent yield. Compound was the precursor for each of , and [{InCl3(tmeda)2{micro-(OSnMe2)2}}] () by treatment with one () or two () equivalents of K[N(H)(C6H3Pri(2)-2,6)], successively Li[N(SiMe3)(C6H3Pri(2)-2,6)] and moist air (), Na in thf (), tmeda (), or successively tmeda and Me3SnSnMe3 (). Crystals of (with an equivalent of In) and were obtained from InCl or thermolysis of [In(Cl)(L){N(SiMe3)(C6H3Pri(2)-2,6)}] () {prepared in situ from and Li[N(SiMe3)(C6H3Pri(2)-2,6)] in Et2O}, respectively. Compound was obtained from a thf solution of and sulfur. X-Ray data for crystalline , , , , , and are presented. The M(L) moiety in each (not the L-free ) has the monoanionic L ligated to the metal in the N,N'-chelating mode. The MN1C1C2C3N2 six-membered M(L) ring is pi-delocalised and has the half-chair (, and ) or boat (, and ) conformation.  相似文献   

13.
A family of new coordination vanadium(IV) compounds supported by a terminal or bridged aryl imido ligand are reported. Reaction of V(NMe(2))(4) with anilines ArNH(2), where Ar = 2,6-i-Pr(2)-C(6)H(3), 2,6-Me(2)-C(6)H(3), Ph, 2,6-Cl(2)-C(6)H(3), and C(6)F(5), afforded the diamagnetic imido-bridged complexes [V(NAr)(NMe(2))(2)](2) (1a-e). Chlorination of 1a-e with trimethylchlorosilane afforded complexes 2a-e formulated as [V(=NAr)Cl(2)(NHMe(2))(x)()](n)(). One-pot reaction of V(NMe(2))(4) with ArNH(2) in the presence of an excess of trimethylchlorosilane gave the five-coordinate compound [V(=NAr)Cl(2)(NHMe(2))(2)] (3a-e). Reaction of 3a-e with pyridine, bipyridine (bipy), or N,N,N',N'-tetramethylethylenediamine (tmeda) gave respectively the six-coordinate tris- or bis(pyridine) adducts [V(=NAr)Cl(2)(Py)(3)] (4a-e) or [V(=NAr)Cl(2)(Py)(2)(NHMe(2))] (5a), bipyridine complexes [V(=NAr)Cl(2)(bipy)(NHMe(2))] (5a-e) and [V(=NAr)Cl(2)(bipy)(Py)] (9a), and tmeda adduct [V(=NAr)Cl(2)(tmeda)(NHMe(2))] (10a). Moreover, five-coordinate complexes free of NHMe(2) ligands, such as [V(=NAr)Cl(2)(Py)(2)] (5a), [V(=NAr)Cl(2)(bipy)] (8a), and [V(=NAr)Cl(2)(tmeda)] (11a), were directly prepared starting from precursors 2a-e. All compounds were totally characterized by spectroscopic methods (IR, (1)H NMR for diamagnetic complexes, and EPR for paramagnetic complexes), elemental analysis, magnetism, and single-crystal X-ray diffraction studies for 1b, 3a, 3d, 4b, 4d, 7c, 10a, and 11a.  相似文献   

14.
Reactions of the lithiated diamido-pyridine or diamido-amine ligands Li(2)N(2)N(py) or Li(2)N(2)N(am) with [W(NAr)Cl(4)(THF)] (Ar = Ph or 2,6-C(6)H(3)Me(2); THF = tetrahydrofuran) afforded the corresponding imido-dichloride complexes [W(NAr)(N(2)N(py))Cl(2)] (R = Ph, 1, or 2,6-C(6)H(3)Me(2), 2) or [W(NAr)(N(2)N(am))Cl(2)] (R = Ph, 3, or 2,6-C(6)H(3)Me(2), 4), respectively, where N(2)N(py) = MeC(2-C(5)H(4)N)(CH(2)NSiMe(3))(2) and N(2)N(am) = Me(3)SiN(CH(2)CH(2)NSiMe(3))(2). Subsequent reactions of 1 with MeMgBr or PhMgCl afforded the dimethyl or diphenyl complexes [W(NPh)(N(2)N(py))R(2)] (R = Me, 5, or Ph, 6), respectively, which have both been characterized by single crystal X-ray diffraction. Reactions of Li(2)N(2)N(py) or Li(2)N(2)N(am) with [Mo(NR)(2)Cl(2)(DME)] (R = (t)Bu or Ph; DME = 1,2-dimethoxyethane) afforded the corresponding bis(imido) complexes [Mo(NR)(2)(N(2)N(py))] (R = (t)Bu, 7, or Ph, 8) and [Mo(N(t)Bu)(2)(N(2)N(am))] (9).  相似文献   

15.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

16.
Lithium aluminates Li[Al(O-2,6-Me(2)C(6)H(3))R'(3)] (R' = Et, Ph) react with the μ(3)-alkylidyne oxoderivative ligands [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] to afford the aluminum-lithium-titanium cubane complexes [{R'(3)Al(μ-O-2,6-Me(2)C(6)H(3))Li}(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CR)] [R = H, R' = Et (5), Ph (7); R = Me, R' = Et (6), Ph (8)]. Complex 7 evolves with the formation of a lithium dicubane species and a Li{Al(μ-O-2,6-Me(2)C(6)H(3))Ph(3)}(2)] unit.  相似文献   

17.
Group 5 metal complexes [M(eta5-C5H5)[eta5-C5H4SiMe2(CH2-eta]2-CH=CH2)]X] (M = Nb, X = Me, CH2Ph, CH2SiMe3; M = Ta, X = Me, CH2Ph) and [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2-eta2-CH=CH2)]X] (X = Cl, Me, CH2Ph, CH2SiMe3) containing a chelating alkene ligand tethered to a cyclopentadienyl ring have been synthesized in high yields by reduction with Na/Hg (X = Cl) and alkylation with reductive elimination (X = alkyl) of the corresponding metal(iv) dichlorides [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]Cl2] (Cp = C5H5, M = Nb, Ta, Cp = C5Me5, M = Ta). These chloro- and alkyl-alkene coordinated complexes react with CO and isocyanides [CNtBu, CN(2,6-Me2C6H3)] to give the ligand-substituted metal(III) compounds [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]XL] (X = Cl, Me, CH2Ph, CH2SiMe3). Reaction of the chloro-alkene tantalum complex with LiNHtBu results in formation of the imido hydride derivative [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2CH=CH2)]H(NtBu)]. NMR studies for all of the new compounds and DFT calculations for the alkene-coordinated metal complexes are compared with those known for related group 4 metal cations.  相似文献   

18.
Zhao D  Gao B  Gao W  Luo X  Tang D  Mu Y  Ye L 《Inorganic chemistry》2011,50(1):30-36
A series of new titanium(IV) complexes with symmetric or asymmetric cis-9,10-dihydrophenanthrenediamide ligands, cis-9,10-PhenH(2)(NR)(2)Ti(O(i)Pr)(2) [PhenH(2) = 9,10-dihydrophenanthrene, R = 2,6-(i)Pr(2)C(6)H(3) (2a), 2,6-Et(2)C(6)H(3) (2b), 2,6-Me(2)C(6)H(3) (2c)], cis-9,10-PhenH(2)(NR(1))(NR(2))Ti(O(i)Pr)(2) [R(1) = 2,6-(i)Pr(2)C(6)H(3), R(2) = 2,6-Et(2)C(6)H(3) (2d); R(1) = 2,6-(i)Pr(2)C(6)H(3), R(2) = 2,6-Me(2)C(6)H(3) (2e)], and [cis-9,10-PhenH(2)(NR(1))(2)][o-C(6)H(4)(CH=NR(2))]TiO(i)Pr [R(1) = 2,6-(i)Pr(2)C(6)H(3), R(2) = 2,6-Et(2)C(6)H(3) (3a); R(1) = 2,6-(i)Pr(2)C(6)H(3), 2,6-Me(2)C(6)H(3) (3b)], have been synthesized from the reactions of TiCl(2)(O(i)Pr)(2) with o-C(6)H(4)(CH=NR)Li [R = 2,6-(i)Pr(2)C(6)H(3), 2,6-Et(2)C(6)H(3), 2,6-Me(2)C(6)H(3)]. The symmetric complexes 2a-2c were obtained from the reactions of TiCl(2)(O(i)Pr)(2) with 2 equiv of the corresponding o-C(6)H(4)(CH=NR)Li followed by intramolecular C-C bond-forming reductive elimination and oxidative coupling processes, while the asymmetric complexes 2d-2e were formed from the reaction of TiCl(2)(O(i)Pr)(2) with two different types of o-C(6)H(4)(CH=NR)Li sequentially. The complexes 3a and 3b were also isolated from the reactions for complexes 2d and 2e. All complexes were characterized by (1)H and (13)C NMR spectroscopy, and the molecular structures of 2a, 2b, 2e, and 3a were determined by X-ray crystallography.  相似文献   

19.
Reaction of ArNCO with syn-[MoO(mu-O)(S2CNR2)]2 or syn-[MoO(mu-NAr)(S2CNR2)]2 at 110 degrees C leads to the facile formation of bridging ureato complexes [Mo2(NAr)2(mu-NAr){mu-ArNC(O)NAr}(S2CNR2)2](Ar = Ph, p-tol; R = Me, Et, Pr), formed upon substitution of all oxo ligands and addition of a further equivalent of isocyanate across one of the bridging imido ligands. Related sulfido-bridged complexes [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2] have been prepared from syn-[Mo2O2(mu-O)(mu-S)(S2CNR2)2]. When reactions with syn-[MoO(mu-NAr)(S2CNEt2)]2 were followed by NMR, intermediates were observed, being formulated as [Mo2O(NAr)(mu-NAr){mu-ArNC(O)NAr}(S2CNEt2)2], which at higher temperatures convert to the fully substituted products. A crystallographic study of [Mo2(N-p-tol)2(mu-S){mu-p-tolNC(O)N-p-tol}(S2CNPr2)2] reveals that the bridging ureato ligand is bound asymmetrically to the dimolybdenum centre-molybdenum-nitrogen bonds trans to the terminal imido ligands being significantly elongated with respect to those cis-a result of the trans-influence of the terminal imido ligands. This trans-influence also leads to a trans-effect, whereby the exchange of aryl isocyanates can occur in a regioselective manner. This is followed by NMR studies and confirmed by a crystallographic study of [Mo2(N-p-tol)2(mu-N-p-tol){mu-p-tolNC(O)NPh}(S2CNEt2)2]--the PhNCO occupying the site trans to the terminal imido ligands. Ureato complexes also react with PhNCS, initially forming [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2], resulting from exchange of the bridging imido ligand for sulfur, together with small amounts of [Mo2(NAr)2(mu-S)(mu-S2)(S2CNEt2)2], containing bridging sulfide and disulfide ligands. The ureato complexes [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2] react further with PhNCS to give [Mo2(NAr)2(mu-S)2(S2CNR2)2]n (n = 1, 2), which exist in a dimer-tetramer equilibrium. In order to confirm these results crystallographic studies have been carried out on [Mo2(N-p-tol)2(mu-S)(mu-S2)(S2CNEt2)2] and [Mo2(N-p-tol)2(mu-S)2(S2CNPr2)2]2.  相似文献   

20.
Berreau LM  Chen J  Woo LK 《Inorganic chemistry》2005,44(21):7304-7306
The imido(meso-tetra-p-tolylporphyrinato)molybdenum(IV) complexes, (TTP)Mo=NR, where R = C6H5 (1a), p-CH3C6H4 (1b), 2,4,6-(CH3)3C6H2 (1c), and 2,6-(i-Pr)2C6H4 (1d), can be prepared by the reaction of (TTP)MoCl2 with 2 equiv of LiNHR in toluene. Upon treatment of the imido complexes with pyridine derivatives, NC5H4-p-X (X = CH3, CH(CH3)2, C[triple bond]N), new six-coordinate complexes, (TTP)Mo=NR.NC5H4-p-X, were observed. The reaction between the molybdenum imido complexes, (TTP)Mo=NC6H5 or (TTP)Mo=NC6H4CH3, and (TTP)Ti(eta2-PhC[triple bond]CPh) resulted in complete imido group transfer and two-electron redox of the metal centers to give (TTP)Mo(eta2-PhC[triple bond]CPh) and (TTP)Ti=NC6H5 or (TTP)Ti=NC6H4CH3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号