首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
(1‐Adamantyl)methyl glycidyl ether (AdaGE) is introduced as a versatile monomer for oxyanionic polymerization, enabling controlled incorporation of adamantyl moieties in aliphatic polyethers. Via copolymerization with ethoxyethyl glycidyl ether (EEGE) and subsequent cleavage of the acetal protection groups of EEGE, hydrophilic linear polyglycerols with an adjustable amount of pendant adamantyl moieties are obtained. The adamantyl unit permits control over thermal properties and solubility profile of these polymers (LCST). Additionally, AdaGE is utilized as a termination agent in carbanionic polymerization, affording adamantyl‐terminated polymers. Using these structures as macroinitiators for the polymerization of ethylene oxide affords amphiphilic, in‐chain adamantyl‐functionalized block copolymers.

  相似文献   


2.
A novel water insoluble, multifunctional poly(ethylene glycol), poly(hydrazide ethylene glycol‐co‐benzyl glycidyl ether) (P(HZ‐co‐BnGE)), is synthesized via thiol‐ene click reaction of poly(allyl glycidyl ether‐co‐benzyl glycidyl ether) (P(AGE‐co‐BnGE)). The base polymer P(AGE‐co‐BnGE) is previously prepared by anionic ring‐opening copolymerization of the corresponding monomers. To demonstrate utility, bicompartmental microspheres and microcylinders containing P(HZ‐co‐BnGE) in one of the compartments are prepared via electrohydrodynamic (EHD) co‐jetting. Next, spatially controlled surface reactivity toward sugars is demonstrated by selective binding of 2α‐mannobiose to the P(HZ‐co‐BnGE) compartment only, as confirmed by a carbohydrate‐lectin‐binding assay. These sugar‐reactive hydrazide‐presenting microparticles have potential applications for glyco‐targeted drug delivery.

  相似文献   


3.
A novel route for the synthesis of poly(ethylene glycol)‐b‐polystyrene copolymer, starting from commercially available poly(ethylene glycol) methyl ether and azido terminated polystyrene prepared by atom transfer radical polymerization and subsequent nucleophilic substitution, is applied with simplicity and high efficiency. The combination of photoinduced copper (I)‐catalyzed alkyne‐azide cycloaddition (CuAAC) and ketene chemistry reactions proceeds either simultaneously or sequentially in a one‐pot procedure under near‐visible light irradiation. In both cases, excellent block copolymer formations are achieved, with an average molecular weight of around 7000 g mo1−1 and a polydispersity index of 1.20.

  相似文献   


4.
Cyclic multiblock polymers with high‐order blocks are synthesized via the combination of single‐electron transfer living radical polymerization (SET‐LRP) and copper‐catalyzed azide‐alkyne cycloaddition (CuAAC). The linear α,ω‐telechelic multiblock copolymer is prepared via SET‐LRP by sequential addition of different monomers. The SET‐LRP approach allows well control of the block length and sequence as A‐B‐C‐D‐E, etc. The CuAAC is then performed to intramolecularly couple the azide and alkyne end groups of the linear copolymer and produce the corresponding cyclic copolymer. The block sequence and the cyclic topology of the resultant cyclic copolymer are confirmed by the characterization of 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry.

  相似文献   


5.
The kinetics of mechanochemical chain scission of poly(phthalaldehyde) (PPA) are investigated. Ultrasound‐induced cavitation is capable of causing chain scission in the PPA backbone that ultimately leads to rapid depolymerization of each resulting polymer fragment when above the polymer's ceiling temperature (Tc). An interesting feature of the mechanochemical breakdown of PPA is that “half‐chain” daughter fragments are not observed, since the depolymerization is rapid following chain scission. These features facilitate the determination of rate constants of activation for multiple molecular weights from a single sonication experiment. Additionally, the degradation kinetics are modified with chain‐end trapping agents through variation of the nature and amount of small molecule nucleophile or electrophile.

  相似文献   


6.
A novel one‐component type II polymeric photoinitiator, poly(vinyl alcohol)–thioxanthone (PVA–TX), is synthesized by a simple acetalization process and characterized. PVA–TX enables photopolymerization of methyl methacrylate and acrylamide in both organic and aqueous media. Photopolymerization proceeds even in the absence of a co‐initiator since PVA–TX possesses both chromophoric and hydrogen donating sites in the structure.

  相似文献   


7.
Photolithographic patterning of a xanthate precursor to poly(3,4‐diphenyl‐2,5‐thienylene vinylene) is described. Unlike xanthate precursors to poly(p‐phenylene vinylene), the thienylene vinylene analogue patterns as a positive tone resist. Characterization of irradiated films reveals photooxidative cleavage of the vinylene linker decreases the molecular weight of the polymer (increasing the solubility of the UV‐exposed areas). As a result of the mechanism, the developed pattern sees no UV light exposure, which is a significant advantage compared with negative‐tone‐conjugated polymer resists. Single micron resolution of a low‐bandgap polymer is achieved in an efficient and scalable process.

  相似文献   


8.
A unique fabrication process of low molar mass, crystalline polypeptoid fibers is described. Thermoresponsive fiber mats are prepared by electrospinning a homogeneous blend of semicrystalline poly(N‐(n‐propyl) glycine) (PPGly; 4.1 kDa) with high molar mass poly(ethylene oxide) (PEO). Annealing of these fibers at ≈100 °C selectively removes the PEO and produces stable crystalline fiber mats of pure PPGly, which are insoluble in aqueous solution but can be redissolved in methanol or ethanol. The formation of water‐stable polypeptoid fiber mats is an important step toward their utilization in biomedical applications such as tissue engineering or wound dressing.

  相似文献   


9.
A double hydrophilic block copolymer, poly(ethylene glycol)‐poly(3‐dimethyl (methacryloyloxyethyl) ammonium propane sulfonate) (PEG‐SB), is synthesized by reversible addition‐fragmentation transfer (RAFT) polymerization using PEG methyl ether (4‐cyano‐4‐pentanoate dodecyl trithiocarbonate) as a chain transfer agent. PEG‐SB forms multi‐layered microspheres with dipole‐dipole interactions of the SB side chains as the driving force. The PEG‐SB polymers show an upper critical solution temperature (UCST) and the UCST is controllable by the polymerization degree. The PEG‐SB microspheres are dissociated above the UCST and then monodispersed microspheres (∼1 μm) are obtained when the solution temperature is decreased below the UCST again. The disassociation/association of the microspheres is also controllable using the concentration of NaCl. These multi‐responsive microspheres could be a powerful tool in the field of nano‐biotechnology.

  相似文献   


10.
A facile and versatile method for the synthesis of Janus graphene oxide (GO) nanosheets with different structures is reported. Based on electrostatic assembly, Janus GO nanosheets can be easily functionalized with a template polymer or be defunctionalized by altering the ionic strength. By using this approach, Janus GO nanosheets are prepared successfully with hydrophobic polystyrene chains on one side and hydrophilic poly(2‐(dimethylamino)ethyl methacrylate) chains on the other side.

  相似文献   


11.
Synthesis of a cyclodextrin (CD) polyrotaxane is achieved for the first time by simultaneous free radical polymerization of isoprene, threading by CD, and stoppering by copolymerization of styrene. This reaction is performed in an eco‐friendly manner in an aqueous medium similar to classical emulsion polymerization. Threaded CD rings of the polyrotaxane are cross‐linked by hexamethylene diisocyanate, leading to highly elastic slide‐ring gels.

  相似文献   


12.
Binary polystyrene and poly(4‐vinylpyridine) mixed grafted silica nanoparticles (PSt/P4VP‐g‐SNPs) are fabricated using CuI‐catalyzed azide‐alkyne Huisgen cycloaddition (CuAAC) via grafting‐to method. Azide‐terminated PSt and P4VP are synthesized via post‐ and pre‐atom transfer radical polymerization modification, respectively. Then, the polymers are simultaneously anchored onto alkyne‐modified SNPs by CuAAC yielding mixed brushes as shown by Raman spectroscopy, dynamic light scattering, and thermogravimetric analysis. To the best of our knowledge, this is the first report of simultaneously grafting two distinct polymer chains to synthesize mixed grafted silica nanoparticles using CuAAC technique via grafting‐to method.

  相似文献   


13.
Hierarchical semicrystalline block copolymer nanoparticles are produced in a segmented gas‐liquid microfluidic reactor with top‐down control of multiscale structural features, including nanoparticle morphologies, sizes, and internal crystallinities. Control of multiscale structure on disparate length scales by a single control variable (flow rate) enables tailoring of drug delivery nanoparticle function including release rates.

  相似文献   


14.
Endowing unimolecular soft nanoobjects with biomimetic functions is attracting significant interest in the emerging field of single‐chain technology. Inspired by the compartmentalized structure and polymerase activity of metalloenzymes, copper‐containing compact nanoglobules have been designed, synthesized, and characterized endowed with metalloenzyme mimicking characteristics toward controlled synthesis of water‐soluble polymers and thermoresponsive hydrogels. When compared to metalloenzymes, artificial nanoobjects endowed with metalloenzyme mimicking characteristics offer increased stability against thermal changes and reduced degradability by hydrolytic enzymes.

  相似文献   


15.
Conjugation of a hydrophobic poly(2‐oxazoline) bearing tertiary amide groups along its backbone with a short single stranded nucleotide sequence results in an amphiphilic comb/graft copolymer, which organizes in fibrils upon direct dissolution in water. Supported by circular dichroism, atomic force microscopy, transmission electron microscopy, and scattering data, fibrils are formed through inter‐ and intramolecular hydrogen bonding between hydrogen accepting amide groups along the polymer backbone and hydrogen donating nucleic acid grafts leading to the formation of hollow tubes.

  相似文献   


16.
This communication describes the first application of cycloaddition between an in situ generated nitrile oxide with norbornene leading to a polymer crosslinking reaction for the preparation of poly(ethylene glycol) hydrogels under physiological conditions. Hydrogels with high water content and robust physical strength are readily formed within 2–5 min by a simple two‐solution mixing method which allows 3D encapsulation of neuronal cells. This bioorthogonal crosslinking reaction provides a simple yet highly effective method for preparation of hydrogels to be used in bioengineering.

  相似文献   


17.
1,5,7‐Triazabicyclo[4.4.0]dec‐5‐ene (TBD)‐catalyzed polycondensation reactions of fatty acid derived dimethyl dicarbamates and diols are introduced as a versatile, non‐isocyanate route to renewable polyurethanes. The key step for the synthesis of dimethyl carbamate monomers from plant‐oil‐derived dicarboxylic acids is based on a sustainable base‐catalyzed Lossen rearrangement. The formed polyurethanes with molecular weights up to 25 kDa are characterized by SEC, DSC, and NMR analysis.

  相似文献   


18.
Furfuryl glycidyl ether (FGE) represents a highly versatile monomer for the preparation of reversibly cross‐linkable nanostructured materials via Diels–Alder reactions. Here, the use of FGE for the mid‐chain functionalization of a P2VP‐b‐PEO diblock copolymer is reported. The material features one furan moiety at the block junction, P2VP68‐FGE‐b‐PEO390, which can be subsequently addressed in Diels–Alder reactions using maleimide‐functionalized counterparts. The presence of the FGE moiety enables the introduction of dyes as model labels or the formation of hetero‐grafted brushes as shell on hybrid Au@Polymer nanoparticles. This renders P2VP68‐FGE‐b‐PEO390, a powerful tool for selective functionalization reactions, including the modification of surfaces.

  相似文献   


19.
A straightforward and expeditious monotopic approach for the preparation of 1,2,3‐triazolium‐based poly(ionic liquids) (TPILs) is reported. It is based on the solvent‐ and catalyst‐free polyaddition of an α‐azide‐ω‐alkyne monomer in the presence of methyl iodide or N‐methyl bis[(trifluoromethyl)sulfonyl]imide alkylating agents. Poly(1,2,3‐triazole)s generated in bulk or by thermal azide–alkyne cycloaddition (AAC) are quaternized in‐situ to afford TPILs composed of 1,3,4‐ and 1,3,5‐trisubstituted 1,2,3‐triazolium units. The physical and ion‐conducting properties of the prepared samples are compared with the TPILs composed solely of 1,3,4‐trisubstituted 1,2,3‐triazolium units obtained through a multistep approach involving copper(I)‐catalyzed AAC polyaddition, quaternization of the 1,2,3‐triazole groups, and anion metathesis. TPILs obtained through the monotopic approach display thermal stabilities and ionic conductivities comparable to their pure regioisomeric analogues.

  相似文献   


20.
Rewritable optical storage has been obtained in a spiropyran doped liquid crystal polymer films. Pictures can be recorded on films upon irradiation with UV light passing through a grayscale mask and they can be rapidly erased using visible light. Films present improved photosensitivity and optical contrast, good resistance to photofatigue, and high spatial resolution. These photochromic films work as a multifunctional, dynamic photosensitive material with a real‐time image recording feature.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号