首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
In this review article, the development of the double cladding optical fiber for high power fiber lasers is reviewed. The main technology for high power fiber lasers, including laser diode beam shaping, fiber laser pumping techniques, and amplification systems, are discussed in detail. 1050 W CW output and 133 W pulsed output are obtained in Shanghai Institute of Optics and Fine Mechanics, China. Finally, the applications of fiber lasers in industry are also reviewed.   相似文献   

2.
In this review article, the development of the double cladding optical fiber for high power fiber lasers is reviewed. The main technology for high power fiber lasers, including laser diode beam shaping, fiber laser pumping techniques, and amplification systems, are discussed in detail. 1050 W CW output and 133 W pulsed output are obtained in Shanghai Institute of Optics and Fine Mechanics, China. Finally, the applications of fiber lasers in industry are also reviewed.  相似文献   

3.
Conclusions  We have briefly reviewed some of the applications of diode-pumping to solid-state laser systems. The potential of this combination is already well demonstrated in these few examples which only consider medium-power applications. New highly efficient laser crystals like Yb:YAG, and new pumping schemes like that employed in newly developed thin-disk lasers also appear promising as an alternative approach to medium-high power all-solid-state lasers [44]. High-power systems have also been developed for industrial, medical and environmental applications [45]; their massive use, however, largely depends on diode-bar cost drop, by this time being well-established that the more efficient pumping solution for these high power bulk systems is side-pumping. An increasingly attractive alternative to diode-pumped medium power infrared cw lasers is currently represented by diode-pumped fibre lasers, which generate as much as 35 W in a diffraction-limited beam. This technology offers superior ruggedness and compactness, but is presently limited to cw operation or very low-energyQ-switching. In conclusion, we strongly believe that an improved technology for more reliable and low-cost diode bar production could accelerate the power scale up of DPSS laser systems and quickly push them to fully replace all the other laser competitors.  相似文献   

4.
We discuss and analyze concepts for the generation of tuneable continuous wave terahertz (THz) radiation with two color diode lasers. First, different geometries of two color lasers are reviewed. We show that the THz power of two color lasers in combination with external photomixers becomes sufficient for scanning THz imaging applications when optical amplification with a tapered amplifier is implemented. Then, the concept of direct emission of THz radiation out of a two‐color semiconductor laser is reviewed and the potential of this concept with respect to THz bandwidth and achievable THz power is critically analyzed.  相似文献   

5.
Laser diode line widths and line shapes are experimentally investigated in dependence on the diode current and on back reflections from an optical system. Four distributed-feedback (DFB)-type diode lasers and two vertical-cavity surface-emitting lasers (VCSELs) have been tested within the same optical setup and using the same fitting methods. System back reflection ratios of light reflected back to the laser have been varied between ?1?dB and ?45?dB and were below ?60?dB when all reflections were blocked. The background of this investigation is the evaluation of different laser types with respect to their suitability for sensor applications in which optical back reflections may occur, for example tunable diode-laser spectroscopy (TDLS). While DFB-type lasers showed almost pure Lorentzian line shapes and line widths of a few MHz, the tested VCSELs had a strong Gaussian contribution to the line shape, indicating stronger 1/f noise, which was also observed in the relative intensity noise of these particular lasers. System reflection ratios above ?25?dB had strong effects on the line width in both DFB diode lasers and VCSELs, while some influences have been observed at even lower reflection ratios for DFB diode lasers. As much smaller reflection ratios are typically required in TDLS systems to avoid etalon-like fringes and self-mixing interference effects, we conclude that the influence on the line width is not the most important reason to minimize back reflections in practical TDLS systems or to choose one type of diode laser over the other.  相似文献   

6.
Abstract

Lasers have advantages compared to conventional light sources, which include high power, a monochromatic emission profile, stability, and rapid tuning across an atomic line. These advantages have resulted in superior analytical figures of merit and methods of background correction compared to conventional light sources. The most widely used lasers for atomic spectrometry include dye laser systems, optical parametric oscillator systems, and diode lasers. Three principal techniques employ lasers as light sources. Laser‐excited atomic fluorescence spectrometry (LEAFS) involves the use of laser light to excite atoms that emit fluorescence and serves as the analytical signal. Laser‐enhanced ionization (LEI) involves laser excitation of atoms to an excited state energy level at which collisional ionization occurs at a higher rate than from the ground state. Diode laser atomic absorption spectrometry (DLAAS) employs a DL as a source to excite atoms in an atom cell from the ground state to an excited state. The analytical signal is involves the ratio of the incident and transmitted beams. Recent applications of these techniques are discussed, including practical applications, hyphenated techniques employing laser‐induced plasmas, and work to characterize fundamental spectroscopic parameters.  相似文献   

7.
Abstract: Conventional Raman techniques require a continuous-wave laser with stabilized wavelength, narrow line width, and sufficient output power. Due to their miniature size and low cost, diode lasers are good choice as light sources for Raman spectroscopy, especially when compact and portable instruments are needed. However, a solitary multimode diode laser has certain drawbacks that limit its use for Raman application. To circumvent these drawbacks, an external cavity can be coupled to the active gain medium of the diode to enhance the laser performance. A grating-based external cavity allows the laser to operate in a single longitudinal mode with greatly reduced line width and stabilized wavelength. This article examines the fundamentals of semiconductor lasers to show the necessity of operating diode lasers in an external cavity for Raman applications. Two feedback grating-based external cavity diode laser (ECDL) designs, viz. Littrow and Littman-Metcalf configurations, are explained. Historic and recent progress in the development of ECDL devices is reported. An updated summary of ECDL-equipped Raman systems applied to fields such as in vivo biomedical studies and in situ process/quality control is provided. Topics on mode-hop-free continuous scanning, wavelength stabilization, and dealing with ambient conditions are discussed.  相似文献   

8.
We analyze in detail the frequency noise properties of a grating enhanced external cavity diode laser (GEECDL). This system merges two diode laser concepts, the grating stabilized diode laser and the diode laser with resonant optical feedback, thus combining a large tuning range with an excellent short-term frequency stability. We compare the frequency noise spectrum of a GEECDL to that of a grating stabilized diode laser and demonstrate a 10-fold reduction of the frequency noise linear spectral density. The GEECDL is phase locked to a similar laser and to a fs-frequency comb with a servo loop providing an open-loop unity-gain frequency of only 237 kHz, which is a tenth of the bandwidth typically required for grating stabilized diode lasers. We achieve a residual rms phase error as small as 72 mrad (≈ 200 mrad) for stabilization to a similar laser (to the fs-frequency comb). We demonstrate that the novel diode laser can phase-coherently track a stable optical reference with an instability of 1.8×10-16 at 1 s. This laser system is well suited for applications that require phase locking to a low-power optical reference under noisy conditions. It may also be considered for the implementation of optical clock lasers. PACS 42.55.Px; 42.60.Jf; 42.50.Gy  相似文献   

9.
超连续谱激光指的是当泵浦激光穿过特殊光波导时,一系列的非线性效应引起入射激光束的光谱展宽,从而输出宽光谱激光束。随着超快激光和光子晶体光纤技术的发展,利用超短脉冲在光子晶体光纤中的传播链产生相干的且亮度高的超连续谱激光成为了一种理想的白光源。自从超连续谱激光源投入应用以来,其应用领域越来越广。尤其在生物医学的细胞、血液等样品分析当中,荧光光谱学、流式细胞仪、共焦显微、光学相干层析等技术都是强有力的分析工具,在采用这些先进技术的科学仪器中,超连续谱激光源成为了一种主要光学部件。首先对超连续谱激光源的国际研究进展作了详细介绍,然后对超连续激光光谱技术在显微成像、流式细胞仪、荧光寿命成像显微、荧光共振能量转移、光学相干层析、共焦显微生物医学分析等生物医学领域中的发展及应用作了综合阐述。对超连续激光光谱技术在非接触式血液制品鉴别的需求、方案及研究进展进行了重点论述,包括覆盖400~2 000 nm光谱范围的光纤化轻型超连续谱激光光源研究;采用超连续谱激光光谱方法探索不同物种血液的种属特征;根据大数据的血液样品光谱特征元数据库分析建立数学模型,利用数学模型实现对血液样品种属光谱学判定;血液鉴别光谱分析便携式整机系统研发等。对超连续激光光谱技术在生物医学领域的应用前景作了展望。  相似文献   

10.
Red-emitting lasers for display applications require high output powers and a high visibility. We demonstrate diode lasers and modules in the red spectral range based on AlGaInP with optical output powers up to 1 W and a nearly diffraction limited beam. These high-luminance light sources based on tapered lasers are well suited for laser TVs and projectors for virtual reality simulators based on the flying spot technology. Additionally, we developed diode lasers with internal distributed Bragg reflector (DBR) surface gratings. These DBR tapered lasers and master-oscillator power-amplifiers based on DBR ridge-waveguide lasers and tapered amplifiers feature high power, single mode emission with coherence lengths up to several meters, which are suitable for the next-generation 3D displays based on holography.  相似文献   

11.
Optical fibres for material processing lasers   总被引:2,自引:0,他引:2  
Fibre transmission of high-power radiation has opened the laser a new dimension of material processing applications. The three-dimensional treatment revolutionised a far field of the production technology. One impressed example is the laser welding process in the automotive industry. The Nd–YAG solid state laser in combination with the optical fibre increase the automation and the flexibility of a whole industry. The next generation of Audis aluminium alloy car body is mainly welded by fibre-guided Nd–YAG laser beams. Since the past 10 years the maximum average laser power transmitted through optical fibres increase from some 100 W up to 10 kW. For industrial application only Nd–YAG lasers and recently the diode lasers are economically suited for fibre transmission.  相似文献   

12.
The application of lasers for processing diamond has revolutionized the diamond industry and its applications in microelectronics, microelectromechanical system (MEMS) and microoptoelectromechanical system (MOEMS) technologies. The process quality can be evaluated using spectroscopic techniques. In the present investigation, four different types of Q‐switched solid‐state lasers (with different beam parameters), namely, a lamp‐pumped Nd:YAG laser operating at 1064 nm, a lamp‐pumped Nd:YAG laser operating at second harmonically generated 532 nm, a diode‐pumped Nd:YVO4 laser operating at 1064 nm and a diode‐pumped Nd:YAG laser operating at 1064 nm, have been employed for the processing of a single‐crystal, gem‐quality, natural diamond. The main objective behind the selection of these lasers with different beam parameters was to study the effect of wavelength, pulse width, pulse energy, peak power and beam quality factor (M2 factor) on various aspects of processing (such as microcracking, material loss and cut surface quality) and their relative merits and demerits. The overall weight loss of the diamond and formation of microcracks during processing have been studied for the above four cases. The characteristics of the graphite formed during processing, elemental analysis, surface morphology of the cut surface and process dynamics have been studied using micro‐Raman spectroscopy and scanning electron microscopy (SEM). We observed that laser cutting of single‐crystal diamonds used for industrial applications can be accomplished without microcracking or surface distortion using Q‐switched Nd:YAG lasers. This allows direct processing without extensive postgrinding and polishing stages. Very efficient diamond processing is possible using diode‐pumped lasers, which results in the lowest possible breakage rate, good accuracy, good surface finish and low weight loss. From the micro‐Raman and SEM studies, it is concluded that the surface quality obtained is superior when diode‐pumped Nd:YVO4 laser is used, owing to its extremely high peak power. The maximum graphite content is observed while processing with lamp‐pumped Nd:YAG laser at 532 nm. An overall comparison of all the laser sources leads to the conclusion that diode‐pumped Nd:YAG laser is a superior option for the efficient processing of natural diamond crystals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
《应用光谱学评论》2013,48(4):395-432
Abstract

The need for higher sensitive detection technology for trace gas samples, either in the laboratory setup or in the atmospheric remote sensing has been a goal for several decades. The development of the tunable diode laser has propelled the progress of trace detection technology, and modulation technology enables the improvement of the detection sensitivity. As a result, the detection of 10?7 or 10?8 absorbance is possible for some applications, and modulation technology has been applied to the ultraviolet as well as mid-infra red wavelength range. In this review, recent progress of tunable diode lasers and diode laser-based modulation technologies are presented. Wavelength modulation, frequency modulation, and two-tone frequency modulation techniques are mainly described along with the actual application of the techniques. In addition, the state-of-the-art of diode laser development which can be adopted for the trace detection is presented.  相似文献   

14.
We numerically investigate the complex nonlinear dynamics for two independently coupled laser systems consisting of (i) mutually delay-coupled edge emitting diode lasers and (ii) injection-locked quantum nanostructures lasers. A comparative study in dependence on the dynamical role of α parameter, which determine the phase-amplitude coupling of the optical field, in both the cases is probed. The variation of α lead to conspicuous changes in the dynamics of both the systems, which are characterized and investigated as a function of optical injection strength η for the fixed coupled-cavity delay time τ. Our analysis is based on the observation that the cross-correlation and bifurcation measures unveil the signature of enhancement of amplitude-death islands in which the coupled lasers mutually stay in stable phase-locked states. In addition, we provide a qualitative understanding of the physical mechanisms underlying the observed dynamical behavior and its dependence on α. The amplitude death and the existence of multiple amplitude death islands could be implemented for applications including diode lasers stabilization.  相似文献   

15.
We review laser applications for primarily in‐vivo ocular imaging techniques, describing their constraints based on biological tissue properties, safety, and the performance of the imaging system. We discuss the need for cost‐effective sources with practical wavelength‐tuning capabilities for spectral studies. Techniques to probe the pathological changes of layers beneath the highly scattering retina and diagnose the onset of various eye diseases are described. The recent development of several optical‐coherence‐tomography‐based systems for functional ocular imaging is reviewed, as well as linear and nonlinear ocular‐imaging techniques performed with ultrafast lasers, emphasizing recent source developments and methods to enhance imaging contrast.  相似文献   

16.
Flying-spot displays require light sources in the red, green and blue with a high optical output power and nearly diffraction limited beams. In this paper we present experimental results of red-emitting, AlGaInP based, tapered diode lasers and their integration into diode laser modules. The laser modules emit a collimated, almost diffraction limited beam with an optical output power as high as 1W at a wavelength close to 635 nm. The tapered laser chips were designed with emphasis on achieving a good beam quality in vertical and lateral directions of a collimated beam. To test the suitability for flying-spot display applications, we performed fiber coupling experiments with a low mode number optical fiber with an etendue as low as 6 × 10?6 mm2 sr. A maximum transmission of 70% of the launched power behind the uncoated fiber as well as a usable power in excess of 580mW were measured.  相似文献   

17.
Recent progress in the study of both absorptive and dispersive bistability in semiconductor injection lasers is reported. Inhomogeneously excited semiconductor lasers as an absorptive case, and laser diode optical amplifiers and optical injection locking systems of laser diodes as dispersive cases, are described. Applications of bistable semiconductor lasers, such as optical memories, optical regenerative amplifiers and all-optical switching, are also discussed.  相似文献   

18.
High‐quality crystals of monoclinic KLu(WO4)2, shortly KLuW, were grown with sizes sufficient for its characterization and substantial progress was achieved in the field of spectroscopy and laser operation with Yb3+‐ and Tm3+‐doping. We review the growth methodology for bulk KLuW and epitaxial layers, its structural, thermo‐mechanical, and optical properties, the Yb3+ and Tm3+ spectroscopy, and present laser results obtained in several operational regimes both with Ti:sapphire and direct diode laser pumping using InGaAs and AlGaAs diodes near 980 and 800 nm, respectively. The slope efficiencies with respect to the absorbed pump power achieved with continuous‐wave (CW) bulk and epitaxial Yb:KLuW lasers under Ti:sapphire laser pumping were ≈ 57 and ≈ 66%, respectively. Output powers as high as 3.28 W were obtained with diode pumping in a simple two‐mirror cavity where the slope efficiency with respect to the incident pump power reached ≈ 78%. Passively Q‐switched laser operation of bulk Yb:KLuW was realized with a Cr:YAG saturable absorber resulting in oscillation at ≈ 1031 nm with a repetition rate of 28 kHz and simultaneous Raman conversion to ≈ 1138 nm with maximum energies of 32.4 and 14.4 μJ, respectively. The corresponding pulse durations were 1.41 and 0.71 ns. Passive mode‐locking by a semiconductor saturable absorber mirror (SESAM) produced bandwidth‐limited pulses with duration of 81 fs (1046 nm, 95 MHz) and 114 fs (1030 nm, 101 MHz) for bulk and epitaxial Yb:KLuW lasers, respectively. Slope efficiency as high as 69% with respect to the absorbed power and an output power of 4 W at 1950 nm were achieved with a diode‐pumped Tm:KLuW laser. The slope efficiency reached with an epitaxial Tm:KLuW laser under Ti:sapphire laser pumping was 64 %. The tunability achieved with bulk and epitaxial Tm:KLuW lasers extended from 1800 to 1987 nm and from 1894 to 2039 nm, respectively.  相似文献   

19.
We present a phase coherent laser system with ultra-low phase noise with a frequency difference of 6.9 GHz. The laser system consists of two extended-cavity diode lasers that are optically phase-locked with electrical feedback to the injection current of a slave laser. The bandwidth of the optical phase-locking loop is extended up to 8 MHz. We achieve the residual phase noise of two phase-locked lasers of below ?120 dBrad2/Hz in the offset frequency range of 100 Hz–350 kHz and a flat phase noise of ?127 dBrad2/Hz from 700 Hz to 20 kHz. These results are, to the best of our knowledge, the lowest phase noise level ever reported with two extended-cavity diode lasers.  相似文献   

20.
Simultaneous two‐state lasing is a unique property of semiconductor quantum‐dot (QD) lasers. This not only changes steady‐state characteristics of the laser device but also its dynamic response to perturbations. In this paper we investigate the dynamic stability of QD lasers in an external optical injection setup. Compared to conventional single‐state laser devices, we find a strong suppression of dynamical instabilities in two‐state lasers. Furthermore, depending on the frequency and intensity of the injected light, pronounced areas of bistability between both lasing frequencies appear, which can be employed for fast optical switching in all‐optical photonic computing applications. These results emphasize the suitability of QD semiconductor lasers in future integrated optoelectronic systems where a high level of stability is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号