首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temporal Raman scattering measurements with 488, 532 and 632 nm excitation wavelengths and normal Raman studies by varying the power (from 30 W/cm2 to 2 MW/cm2) at 488 nm were performed on silver oxide thin films prepared by pulsed‐laser deposition. Initially, silver oxide Raman spectra were observed with all three excitation wavelengths. With further increase in time and power, silver oxide photodissociated into silver nanostructures. High‐intensity spectral lines were observed at 1336 ± 25 and 1596 ± 10 cm−1 with 488 nm excitation. No spectral features were observed with 633 nm excitation. Surface‐enhanced resonance Raman scattering theory is used to explain the complex behavior in the intensity of the 1336/1596 cm−1 lines with varying power of 488 nm excitation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The effects of near‐IR (NIR) laser power over the Raman spectra of poly(aniline) emeraldine salt (PANI‐ES) and base (PANI‐EB) were investigated. The reasons for the existence of several bands from 1324 to 1500 cm−1 in the Raman spectra of poly(aniline) obtained at NIR region were also studied. The bands from 1324 to 1375 cm−1 were associated to νC N of polarons with different conjugation lengths and the bands from 1450 to 1500 cm−1 in Raman spectra of PANI emeraldine and pernigraniline base forms were correlated to νCN modes associated with quinoid units having different conjugation lengths. The increase of laser power at 1064.0 nm causes the deprotonation of PANI‐ES and the formation of cross‐linking segments having phenazine and/or oxazine rings. For PANI‐EB only a small spectral change is observed when the laser power is increased, owing to the low absorption of this form in the NIR region. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
We demonstrate the use of a light‐emitting diode (LED) based experimental setup for collecting polarization‐resolved Raman spectra with good spectral resolution. The combination of a commercial red LED (630 nm), a 1‐nm bandwidth laser‐line filter, and a polarizing prism is used as a light source. Polarization‐resolved spectra in dimethyl sulfoxide are recorded and compared with the corresponding laser‐Raman spectra. The LED‐excited spectra exhibit a resolution slightly lower than those in the laser case but still close to the resolution of the spectrometer. All relevant spectral features of dimethyl sulfoxide including the symmetric and antisymmetric stretching modes of the CSC moiety are resolved with the experimental setup providing a spectral resolution of approximately 20 cm−1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy of gas‐phase CO2 is demonstrated using a single femtosecond (fs) laser beam. A shaped ultrashort laser pulse with a transform‐limited temporal width of ∼7 fs and spectral bandwidth of ∼225 nm (∼3500 cm−1) is employed for simultaneous excitation of the CO2 Fermi dyads at ∼1285 and ∼1388 cm−1. CARS signal intensities for the two Raman transitions and their ratio as a function of pressure are presented. The signal‐to‐noise ratio of the single beam–generated CO2 CARS signal is sufficient to perform concentration measurements at a rate of 1 kHz. The implications of these experiments for measuring CO2 concentrations and rapid pressure fluctuations in hypersonic and detonation‐based chemically reacting flows are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Raman spectra of the monocytes were recorded with laser excitation at 532, 785, 830, and 244 nm. The measurements of the Raman spectra of monocytes excited with visible, near‐infrared (NIR), and ultraviolet (UV) lasers lad to the following conclusions. (1) The Raman peak pattern of the monocytes can be easily distinguished from those of HeLa and yeast cells; (2) Positions of the Raman peaks of the dried cell are in coincidence with those of the monocytes in a culture cell media. However, the relative intensities of the peaks are changed: the peak centered around 1045 cm−1 is strongly intensified. (3) Raman spectra of the dead monocytes are similar to those of living cells with only one exception: the Raman peak centered around 1004 cm−1 associated with breathing mode of phenylalanine is strongly intensified. The Raman spectra of monocytes excited with 244‐nm UV laser were measured on cells in a cell culture medium. A peak centered at 1485 cm−1 dominates the UV Raman spectra of monocytes. The ratio I1574/I1613 for monocytes is found to be around 0.71. This number reflects the ratio between proteins and DNA content inside a cell and it is found to be twice as high as that of E. coli and 5 times as high as that of gram‐positive bacteria. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we present a portable shifted excitation Raman difference spectroscopy (SERDS) system applied in outdoor experiments. A dual‐wavelength diode laser emitting at 785 nm is used as excitation light source. The diode laser provides two individually controllable excitation lines at 785 nm with a spectral distance of about 10 cm−1 for SERDS. This monolithic light source is implemented into a compact handheld Raman probe. Both components were developed and fabricated in‐house. SERDS measurements are performed in an apple orchard, and apples and green apple leafs are used as test samples. For each excitation wavelength, a single Raman spectrum is measured with 50 mW at the sample. Strong background interference from ambient daylight and laser‐induced fluorescence obscure the Raman signals. SERDS efficiently separates the wanted Raman signals from the disturbing background signals. For the Raman spectroscopic investigations of green leafs, one accumulation with an exposure time of 0.2 s was used for each excitation wavelength to avoid detector saturation. An 11‐fold improvement of the signal‐to‐background noise is achieved using SERDS. The results demonstrate the suitability of the portable SERDS system for rapid outdoor Raman investigations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Raman spectroscopy is a molecular vibrational spectroscopic technique that is capable of optically probing the biomolecular changes associated with neoplastic transformation. The purpose of this study was to apply near‐infrared (NIR) Raman spectroscopy for differentiating dysplasia from normal gastric mucosa tissue. A total of 65 gastric mucosa tissues (44 normal and 21 dysplasia) were obtained from 35 patients who underwent endoscopy investigation or gastrectomy operation for this study. A rapid NIR Raman system was utilized for tissue Raman spectroscopic measurements at 785‐nm laser excitation. High‐quality Raman spectra in the range of 800–1800 cm−1 can be acquired from gastric mucosa tissue within 5 s. Raman spectra showed significant differences between normal and dysplastic tissue, particularly in the spectral ranges of 850–1150, 1200–1500 and 1600–1750 cm−1, which contained signals related to proteins, nucleic acids and lipids. The diagnostic decision algorithm based on the combination of Raman peak intensity ratios of I875/I1450 and I1208/I1655 and the logistic regression analysis yielded a diagnostic sensitivity of 90.5% and specificity of 90.9% for identification of gastric dysplasia tissue. This work demonstrates that NIR Raman spectroscopy in conjunction with intensity ratio algorithms has the potential for the noninvasive diagnosis and detection of precancer in the stomach at the molecular level. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The absolute Raman scattering cross sections (σRS) for the 471, 217, and 153 cm−1 modes of sulfur were measured as 6.0 ± 1.2 × 10−27, 7.7 ± 1.6 × 10−27, and 1.2 ± 0.24 × 10−26 cm2 at 815, 799, and 794 nm, respectively, using a 785‐nm pump laser. The corresponding values of σRS at 1120, 1089, and 1081 nm were determined to be 1.5 ± 0.3 × 10−27, 1.2 ± 0.24 × 10−27, and 1.2 ± 0.24 × 10−27 cm2 using a 1064‐nm laser. A temperature‐controlled, small‐cavity (2.125 mm diameter) blackbody source was used to calibrate the signal output of the Raman spectrometers for these measurements. Standoff Raman detection of a 6‐mm‐thick sulfur specimen located at 1500 m from the pump laser and the Raman spectrometer was made using a 1.4‐W, CW, 785‐nm pump laser. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We measured the Raman spectra of ZnO nanoparticles (ZnO‐NPs), as well as transition‐metal‐doped (5% Mn(II), Fe(II) or Co(II)) ZnO nanoparticles, with an average size of 9 nm. A typical Raman peak at 436 cm−1 is observed in the ZnO‐NPs, whereas Zn1−xMnxO, Zn1−xFexO and Zn1−xCoxO presented characteristic peaks at 661, 665 and 675 cm−1, respectively. These peaks can be related to the formation of Mn3O4, Fe3O4 and Co3O4 species in the doped ZnO‐NPs. Moreover, these samples were analyzed at various laser powers. Here, we observed new vibrational modes (512, 571 and 528 cm−1), which are specific to Mn, Fe and Co dopants, respectively, and ZnO‐NPs did not reveal any additional modes. The new peaks were interpreted either as disorder activated phonon modes or as local vibrations of Mn‐, Fe‐ and Co‐related complexes in ZnO. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Raman spectroscopic investigation on weak scatterers such as metals is a challenging scientific problem. Technologically important actinide metals such as uranium and plutonium have not been investigated using Raman spectroscopy possibly due to poor signal intensities. We report the first Raman spectrum of uranium metal using a surface‐enhanced Raman scattering‐like geometry where a thin gold overlayer is deposited on uranium. Raman spectra are detected from the pits and scratches on the sample and not from the smooth polished surface. The 514.5‐ and 785‐nm laser excitations resulted in the Raman spectra of uranium metal whereas 325‐nm excitation did not give rise to such spectra. Temperature dependence of the B3g mode at 126 cm−1 is also investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Five different mixed Al‐hematites with an aluminium molar content varying from 0 to 10% were investigated by micro‐Raman spectroscopy to study the effect of Al‐for‐Fe substitution on the hematite lattice. A red shift of hematite vibrational wavenumbers and a line broadening were observed; also a shoulder located near 430 cm−1 and a broad band at 670 cm−1 developed. The variation of the spectral features is discussed in terms of a local disorder correlated to the insertion of Al3+ ions into the Fe(O)6 octahedra constituting hematite structure. A multivariate analysis was also carried out on the spectral data to distinguish between the doped samples analysed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Raman confocal microscopy with 488 nm excitation wavelength supported with atomic force microscopy (AFM), scanning near‐field optical microscopy (SNOM) and UV–Vis spectrometry was used to investigate air‐dried erythrocytes (red blood cells, RBCs) in whole human blood smears. The central internal part of the cell was dominated by the laser‐induced O2 dissociated oxyHb form as evidenced by the Fe2+ marker band appearing at 1356 cm−1. The existence of a thin outer layer of hemoglobin in the periphery of RBCs was assigned to hemichrome. Evidence for hemichrome includes the oxidation state marker band appearing at 1376 cm−1, the absence of FeO2 band at 570 cm−1 and a UV–Vis spectrum consistent with hemichrome. This is the first time that distributions of Fe2+/Fe3+ hemes inside the single RBC have been reported. The outer layer formation of hemichrome was additionally studied when RBCs were in contact with leucocytes and carotenoids of blood plasma. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The absolute Raman scattering cross section (σRS) for the 1584‐cm−1 band of benzenethiol at 897 nm (1.383 eV) has been measured to be 8.9 ± 1.8 × 10−30 cm2 using a 785‐nm pump laser. A temperature‐controlled, small‐cavity blackbody source was used to calibrate the signal output of the Raman spectrometer. We also measured the absolute surface‐enhanced Raman scattering cross section (σSERS) of benzenethiol adsorbed onto a silver‐coated, femtosecond laser‐nanostructured substrate. Using the measured values of 8.9 ± 1.8 × 10−30 and 6.6 ± 1.3 × 10−24 cm2 for σRS and σSERS respectively, we calculate an average cross‐section enhancement factor (EF) of 0.8 ± 0.3 × 106. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Large area (3 × 3 cm2) substrates for surface‐enhanced Raman scattering were fabricated by combining femtosecond laser microstructuring and soft lithography techniques. The fabrication procedure is as follows: (i) femtosecond laser machining is used to create a silicon master copy, (ii) replicates from polydimethylsiloxane are made, and (iii) a 50‐nm‐thick gold film is deposited on the surface of the replicates. The resulting substrates exhibit strongly enhanced absorption in the spectral region of 350 ∼ 1000 nm and generate enhanced Raman signal with enhancement factor of the order of 107 for 10‐ 6 M rhodamine 6G. The main advantages of our substrates are low cost, large active area, and possibility for mass replication. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Here, we study a low (less than 0.1 µg/ml) concentration aqueous suspension of single‐wall carbon nanotubes (SWNTs) by Raman‐induced Kerr effect spectroscopy (RIKES) in the spectral bands 0.1–10 and 100–250 cm−1. This method is capable of carrying out direct investigation of SWNT hydration layers. A comparison of RIKES spectra of SWNT aqueous suspension and that of milli‐Q water shows a considerable growth in the intensity of low wavenumber Raman modes. These modes in the 0.1–10 cm−1 range are attributed to the rotational transitions of H2O2 and H2O molecules. We explain the observed intensity increase as due to the production of hydrogen peroxide and the formation of a low‐density depletion layer on the water–nanotube interface. A few SWNT radial breathing modes (RBM)are observed (ωRBM = 118.5, 164.7 and 233.5 cm−1) in aqueous suspension, which allows us to estimate the SWNT diameters (∼2.0, 1.5, and 1 nm, respectively). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The distribution profile of Al implanted in crystalline Ge has been investigated by micro‐Raman spectroscopy. Using different excitation laser lines, corresponding to different optical penetration depths, the Al concentration at different depths beneath the sample surface has been studied. We have found a strong correlation between the intensity of the Al–Ge Raman peak at ~370 cm−1, which is due to the local vibrational mode of substitutional Al atoms, and the carrier concentration profile, obtained by the spreading resistance profiling analysis. A similar connection has been also observed for both shape and position of the Ge–Ge Raman peak at ~300 cm−1. According to these experimental findings, we propose here a fast and nondestructive method, based on micro‐Raman spectroscopy under different excitation wavelengths, to estimate the carrier concentration profiles in Al‐implanted Ge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Two strong bands centered at 446 and 607 cm−1 have been observed in the FT‐Raman spectrum of almandine [Fe3Al2(SiO4)3] excited with 1064 nm, which were completely absent in the corresponding dispersive Raman spectra obtained using 488, 514.5 and 532 nm excitation. Furthermore, the mentioned strong bands have not been registered in the anti‐Stokes side of the FT‐Raman spectrum, and were therefore assigned to laser‐induced fluorescence bands. Their appearance is related to the presence of rare‐earth element traces as impurities in the almandine sample. Additionally, the FT‐Raman (and dispersive Raman) spectrum of the isomorphous spessartine [Mn3Al2(SiO4)3] mineral has been introduced, which did not show the presence of these fluorescence emission bands. The purity of the minerals was confirmed by study of their powder X‐ray diffraction (PXRD) patterns. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Using sodium borohydride as the reducing agent and polyvinyl pyrrolidone (PVP, MW = 10 000) as the stabilizer, we obtained silver nanoparticles of various diameters (8–78 nm) from silver nitrate aqueous solutions in the concentration range from 0.001 to 0.1 M. The surface‐enhanced Raman scattering (SERS) from benzoic acid's ring‐breathing mode at 1003 cm−1 was detected from its dilute solutions (∼10−2 M) doped with these silver nanoparticles under 488‐nm laser excitation. The observed size dependences of SERS intensities fit quite well with those calculated by Schatz's theoretical model for spherical silver nanoparticles. The only exception occurred with the smallest particles (8 nm), possibly due to the failure of Maxwell's electromagnetic theory used in this model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Ultraviolet‐resonance Raman (UV‐RR) micro‐spectroscopy is an appropriate and sensitive tool to assess the chromophore structures in bleached cellulosic pulps used for papermaking. The particular selectivity in detection and identification of chromophores in pulps is achieved by acquiring the UV‐RR spectra in the solid state with laser excitation at 325 nm. This wavelength corresponds to absorption of poly‐unsaturated chromophore structures in partially bleached/fully bleached pulps, and linearly correlated with the signal at ca 1600 cm−1 in the UV‐RR spectra. The characteristic vibrations from particular pulp chromophore structures have been assigned from experiments with model compounds, thus allowing the establishment of a UV‐RR database. Among the components of bleached pulp, the xylan–lignin complex was suggested to be an important source of chromophores. The monitoring of pulp bleaching by UV‐RR allowed us to suggest that it is the formation of new polysaccharide‐derived chromophores upon bleaching that hinders development of further brightness and is co‐responsible for the brightness reversion of fully bleached pulps. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Multiwalled carbon nanotubes (MWCNTs) are grafted with gold (Au) nanoparticles of different sizes (1–12 and 1–20 nm) to form Au–MWCNT hybrids. The Au nanoparticles pile up at defect sites on the edges of MWCNTs in the form of chains. The micro‐Raman scattering studies of these hybrids were carried using visible to infrared wavelengths (514.5 and 1064 nm). Enhanced Raman scattering and fluorescence is observed at an excitation wavelength of 514.5 nm. It is found that the graphitic (G) mode intensity enhances by 10 times and down shifts by approximately 3 cm−1 for Au–MWCNT hybrids in comparison with pristine carbon nanotubes. This enhancement in G mode due to surface‐enhanced Raman scattering effect is related to the interaction of MWCNTs with Au nanoparticles. The enhancement in Raman scattering and fluorescence for large size nanoparticles for Au–MWCNTs hybrids is corroborated with localized surface plasmon polaritons. The peak position of localized surface plasmons of Au nanoparticles shifts with the change in environment. Further, no enhancement in G mode was observed at an excitation wavelength of 1064 nm. However, the defect mode (D) mode intensity enhances, and peak position is shifted by approximately 40 cm−1 to lower side at the same wavelength. The enhanced intensity of D mode at 1064 nm excitation wavelength is related to the double resonance phenomenon and shift in the particular mode occurs due to more electron phonon interactions near Fermi level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号