首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiocarbon ((14)C) concentrations at a 43 parts-per-quadrillion level are measured by using saturated-absorption cavity ringdown spectroscopy by exciting radiocarbon-dioxide ((14)C(16)O(2)) molecules at the 4.5 μm wavelength. The ultimate sensitivity limits of molecular trace gas sensing are pushed down to attobar pressures using a comb-assisted absorption spectroscopy setup. Such a result represents the lowest pressure ever detected for a gas of simple molecules. The unique sensitivity, the wide dynamic range, the compactness, and the relatively low cost of this table-top setup open new perspectives for ^{14}C-tracing applications, such as radiocarbon dating, biomedicine, or environmental and earth sciences. The detection of other very rare molecules can be pursued as well thanks to the wide and continuous mid-IR spectral coverage of the described setup.  相似文献   

2.
Infrared gas phase spectroscopy is becoming very common in many life science applications. Here we present three types of trace gas detection systems based on CO2 laser and continuous wave (cw) optical parametric oscillator (OPO) in combination with photoacoustic spectroscopy and cw quantum cascade laser (QCL) in combination with wavelength modulation spectroscopy. Examples are included to illustrate the suitability of CO2 laser system to monitor in real time ethylene emission from various dynamic processes in plants and microorganisms as well as from car exhausts. The versatility of an OPO-based detector is demonstrated by simultaneous detection of 13C-methane and 12C-methane (at 3240 nm) at similar detection limits of 0.1 parts per billion by volume. Recent progress on a QCL-based spectrometer using a continuous wave QCL (output power 25 mW, tuning range of 1891–1908 cm-1) is presented and a comparison is made to a standard chemiluminescence instrument for analysis of NO in exhaled breath. PACS  42.62 Be; 42.62 Fi  相似文献   

3.
Editorial     
Although the potential of continuous-wave optical parametric oscillators (cw OPOs) has been recognized for more than three decades, the devices have only very recently matured sufficiently for practical applications.Thanks to improvements and new developments that have occurred within the last few years in several areas, such as nonlinear materials, pump sources, dielectric coatings, frequency stabilization techniques, and device configurations and optimization, cw OPOs are now able to generate radiation from the near-IR to the mid-IR and even in the visible, in part with substantial power and frequency stability. The door to applications of practical relevance has finally opened. Thus, a special issue reporting on the most recent developments in the field appeared timely, both to present the state of the art and to stimulate further developments and uses of cw OPOs.The issue contains 12 original theoretical and experimental contributions presenting properties and applications of various types of cw OPOs, both singly and doubly resonant. Classical and quantum effects are discussed. It is hoped that this collection will be useful both to specialists and to the general audience interested in an overview of the field.We dedicate this special issue to our Ph.D. student Klaus Schneider, who died on March 30, 1998, following a tragic mountaineering accident. In his short career, he contributed substantially to the field of cw OPOs and would have continued to be active in this field after the completion of his doctorate. His death is a great loss to our community.We thank Prof. Träger for the opportunity to create this issue and Mrs. U. Hentzen for her help in preparing it.  相似文献   

4.
量子级联激光器是一种新型的红外相干光源。利用量子理论与带隙工程,量子级联激光器可实现3 μm到100 μm波长范围内的任意输出波长。由于大多数气体分子的特征光谱都集中在中红外波段,而中红外量子级联激光器具有功率高、线宽窄、扫描速度快等独特的优点,因此,基于量子级联激光器的红外光谱技术已成为气体检测技术的研究热点。尤其是,近年来室温激光器性能得到不断的完善,输出功率和电光转换效率得到了极大的提高,这在很大程度上推动了红外激光光谱技术的迅速发展。本文根据工作原理,分别介绍了基于直接吸收谱检测、相位调制光谱检测、光声调制光谱检测和法拉第旋光效应光谱检测的量子级联激光器红外光谱检测技术,并对其实现方法和应用情况进行了介绍。  相似文献   

5.
The detection of explosives and their associated compounds for security screening is an active area of research and a wide variety of detection methods are involved in this very challenging area. Surface‐enhanced Raman scattering (SERS) spectroscopy is one of the most sensitive tools for the detection of molecules adsorbed on nano‐scale roughened metal surface. Moreover, SERS combines high sensitivity with the observation of vibrational spectra of species, giving complete information on the molecular structure of material under study. In this paper, SERS was applied to the detection of very small quantities of explosives adsorbed on industrially made substrates. The spectra were acquired with a compact Raman spectrometer. Usually, a high signal‐to‐noise (S/N) spectrum, suitable for identification of explosive molecules down to few hundreds of picograms, was achieved within 30 s. Our measurements suggest that it is possible to exploit SERS using a practical detection instrument for routine analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The interaction of cw laser radiation with NO adsorbed on GaAs(110) at 90 K has been studied over a wide range of wavelengths from 457 to 900 nm by high resolution electron energy loss spectroscopy (HREELS), thermal desorption spectroscopy (TDS), and laser induced desorption spectroscopy (LIDS). Adsorption of molecular NO is observed. By varying the incident laser power, it is found that desorption and dissociation of molecular NO are induced by a nonthermal process. By measuring the time profile and the power and wavelength dependence of the desorption signal, the observed desorption and dissociation of NO are attributed to interactions of the adsorbed NO with the photogenerated carriers which migrate to the surface.  相似文献   

7.
二氧化碳(CO2)是环境大气以及燃烧废气的主要成分,同时也是重要的化工原料,对其浓度进行高灵敏度检测在物理、生物、化学等众多学科中均有重要的应用。传统检测方法已经无法满足国防科研、能源化工、医疗诊断等科技前沿领域中对CO2浓度检测的需求。石英增强光声光谱(QEPAS)技术是近年来发展迅速的一种激光检测技术,具有高分辨率、小体积、对环境噪声免疫等优点。基于QEPAS技术探测灵敏度与激励光功率成正比的特性,以中心波长为1 572 nm的窄线宽分布反馈式半导体激光器为激励光源,将掺饵光纤放大器(EDFA)与QEPAS技术联用,提出了功率增强型QEPAS技术,实现了光声信号的大幅度提高。此外,通过波长调制技术、谐波解调技术以及电调制相消技术的使用,成功将装置的整体噪声压制在音叉式石英晶振的理论热噪声水平。激光波长调制深度对装置信号幅度的影响也通过实验在一个标准大气压下进行了研究。结果显示,对6 361.25 cm-1处CO2气体吸收线,当激光功率为1 495 mW,调制深度为0.33 cm-1,系统探测带宽为0.833 Hz时,功率增强型QEPAS装置对CO2的探测灵敏度为3.5 ppm,归一化等效吸收系数为1.01×10-8 W·cm-1·Hz-1/2。  相似文献   

8.
Generation of dual-wavelength continuous-wave (cw) radiation with independent and arbitrarily tuning, and indefinitely close spacing, using two cw optical parametric oscillators (OPOs) coupled with an anti-resonant ring interferometer is reported. The singly resonant OPOs, based on identical 30-mm-long MgO:sPPLT crystals, are pumped by a single cw laser at 532 nm. Two pairs of signal and idler wavelengths can be independently and arbitrarily tuned, with each signal (idler) pair tuned through degeneracy and beyond. Frequency separation between two distinct resonant signal waves from 7 down to 0.8 THz is demonstrated, and their overlap at 951 nm providing a frequency difference as small as ~220 MHz is shown. The OPOs independently provide a signal (idler) wavelength coverage across 870–1,000 nm (1,040–1,370 nm) and simultaneously generate idler powers of >1 W.  相似文献   

9.
Analysis of gas dispersed in scattering media   总被引:1,自引:0,他引:1  
Monitoring of free gas embedded in scattering media, such as wood, fruits, and synthetic materials, is demonstrated by use of diode laser spectroscopy combined with sensitive modulation techniques. Gas detection is made possible by the contrast of the narrow absorptive feature of the free-gas molecules with the slow wavelength dependence of the absorption and scattering cross sections in solids and liquids. An absorption sensitivity of 2.5 x 10(-4), corresponding to a 1.25-mm air column, is demonstrated by measurements of dispersed molecular oxygen. These techniques open up new possibilities for characterization and diagnostics, including internal gas pressure and gas-exchange assessment, in organic and synthetic materials.  相似文献   

10.
量子级联激光器作为一种新型的单极型半导体激光器,其峰值发射波长处于中红外波段(2.5~25 μm),具有功率高、线宽窄、响应速率快等传统半导体激光器所没有的独特优势,且具有较高的探测灵敏度,非常适合中红外波段的气体分子的检测。可广泛应用于大气痕量气体、呼吸气体、燃烧气体、生化气体、机动车尾气、工业废气以及农药残留气体等低浓度气体的检测。因此,利用量子级联激光器对气体分子进行探测在非侵入式医学诊断、环境监测以及工农业生产等领域都具有十分重要的意义。自20世纪末量子级联激光器发明以来,室温激光器的性能得到了长足的进步,也出现了多种结构形式的量子级联激光器。这也使得量子级联激光器红外吸收光谱技术得到了很大的发展。事实上,很多光谱技术在量子级联激光器发明之前就已经得到了发展和应用,而利用量子级联激光器作为光源则在很大程度上扩展了可探测波段,也在一定程度上提高了探测极限。这其中就包括了直接吸收光谱技术、波长调制技术、腔衰荡光谱技术、腔增强吸收光谱技术以及光声光谱等。综述了国内外量子级联激光器进行红外吸收光谱技术的研究现状和发展趋势,分析了量子级联激光器红外吸收光谱技术在发展过程中所遇到的瓶颈以及后期得到的解决方案,比较详细地介绍了各种方法的原理、应用,并指出了在吸收光谱测量中的优缺点,同时对外场痕量气体探测作了简要总结。最后,对量子级联激光器红外吸收光谱技术在未来痕量气体探测上的应用和发展进行了展望,指出随着红外吸收光谱技术的快速发展,这些方法可以得到更有效的改进和发展,进而朝着高灵敏度、高集成度以及高时效方向发展。  相似文献   

11.
With the modern development of infrared laser sources such as broadly tunable quantum cascade lasers and frequency combs, applications of infrared laser spectroscopy are expected to become widespread. Consequently, convenient infrared detectors are needed, having properties such as fast response, high efficiency, and room‐temperature operation. This work investigated conditions to achieve near‐room‐temperature photon‐noise‐limited performance of quantum well infrared photodetectors (QWIPs), in particular the laser power requirement. Both model simulation and experimental verification were carried out. At 300 K, it is shown that the ideal performance can be reached for typical QWIP designs up to a detection wavelength of 10 µm. At 250 K, which is easily reachable with a thermoelectric Peltier cooler, the ideal performance can be reached up to 12 µm. QWIPs are therefore suitable for detection and sensing applications with devices operating up to or near room temperature.  相似文献   

12.
The advent of compact, high brightness supercontinuum radiation sources employing solid core photonic crystal fibres is beginning to make an impact across the field of applied spectroscopy research. In this article we focus on the use of supercontinuum sources to construct novel instrumentation for chemical sensing. A brief overview is given on the mechanisms of supercontinuum generation in solid core photonic crystal fibres, and then we review recent, and present new, results from our own research. We present examples on gas phase sensing applications, permitting wide bandwidth molecular spectra to be gathered at ultrahigh speed. Furthermore we demonstrate the design and construction of a wide bandwidth microscope for wavelength flexible hyperspectral confocal imaging. We conclude with an outlook and a summary of where and how we think the field may develop over coming years. PACS  07.07.Df; 42.62.Fi; 87.64.mk; 87.64.-t  相似文献   

13.
Optical fiber gratings have developed into a mature technology with a wide range of applications in various areas, including physical sensing for temperature, strain, acoustic waves and pressure. All of these applications rely on the perturbation of the period or refractive index of a grating inscribed in the fiber core as a transducing mechanism between a quantity to be measured and the optical spectral response of the fiber grating. This paper presents a relatively recent variant of the fiber grating concept, whereby a small tilt of the grating fringes causes coupling of the optical power from the core mode into a multitude of cladding modes, each with its own wavevector and mode field shape. The main consequence of doing so is that the differential response of the modes can then be used to multiply the sensing modalities available for a single fiber grating and also to increase the sensor resolution by taking advantage of the large amount of data available. In particular, the temperature cross‐sensitivity and power source fluctuation noise inherent in all fiber grating designs can be completely eliminated by referencing all the spectral measurements to the wavelength and power level of the core mode back‐reflection. The mode resonances have a quality factor of 105, and they can be observed in reflection or transmission. A thorough review of experimental and theoretical results will show that tilted fiber Bragg gratings can be used for high resolution refractometry, surface plasmon resonance applications, and multiparameter physical sensing (strain, vibration, curvature, and temperature).  相似文献   

14.
An optical parametric oscillator (OPO), pumped by a fiber-amplified diode laser, is combined with off-axis integrated cavity output spectroscopy (OA-ICOS). The cw OPO (power 1.2 W, tunability 3-4 μm, 5 cm(-1) mode-hop-free tuning) has a tuning speed of 100 THz/s, which is ideal for rapid and sensitive trace gas detection. Combined with OA-ICOS, a detection limit of 50 parts per trillion by volume (1×10(12)) of ethane (C(2)H(6)) in nitrogen was obtained in 0.25s at 2997 cm(-1), corresponding to a noise equivalent absorption sensitivity of 4.8×10(-11) cm(-1) Hz(-1/2). The system demonstrates real-time measurements of methane and water in exhaled human breath.  相似文献   

15.
丁武文  孙利群 《物理学报》2017,66(12):120601-120601
研究了相敏式激光啁啾色散光谱法在高吸收度情况下的应用.用窄频半导体激光器作为光源,利用一工作于载波抑制模式的铌酸锂电光强度调制器调制单频激光,在单频激光两侧产生两个边频分量,并通过两边频分量产生外差干涉信号.利用外差干涉的相位波动来测量甲烷气体位于1653.7 nm附近的折射率波动,通过气体折射率与吸收系数之间的Kramers-Kronig关系计算甲烷气体浓度.传统的波长调制光谱法受限于郎伯-比尔定律,在应用于高吸收度的情况时,存在灵敏度下降的问题,甚至出现随气体浓度上升输出信号反而下降的现象.实验结果显示,相同实验条件下,波长调制光谱法的线性测量范围为38.1—1500 ppm·m,线性测量的动态范围仅为16 d B;而相敏式激光啁啾色散光谱法在很大的吸收度范围内均具有线性输出,检出限低至47.3 ppm·m,线性测量范围上限为174825 ppm·m,具有超过35 d B的动态范围.  相似文献   

16.
A cryostat has been designed for the refrigeration of a semiconductor diode laser (presently GaAs), using a flow of helium gas with controlled temperature. The possibility of independent adjustment of the injection current and of the temperature of the GaAs laser support allows cw emission over a wide wavelength range (~100 Å for a given diode) while maintaining single-mode operation. A long-term frequency stability of ±30 MHz of the free-running single-mode laser has been obtained. By varying the dc injection current, it was possible to achieve linear scanning of the mode frequency, step by step or continuously, over at least 20 GHz without hopping. Possible applications in optical pumping and high-resolution spectroscopy are discussed.  相似文献   

17.
Metal oxide semiconductor gas sensors operating under UV irradiation have been validated for detection of variety of chemicals in wide ranges of concentrations at room temperature. This article reviews recent advances in UV-activated metal oxide gas sensors in general and outlines the operating principles and sensing performance of UV-LED based sensors in particular. The sensing properties of several metal oxide semiconductors such as ZnO, TiO2, SnO2, In2O3, and metal oxide composites under UV-LED irradiation are individually presented and their advantages and shortcomings toward various gases are compared. Moreover, it is demonstrated that for the UV-LED based gas sensors, the performance can be improved by optimizing the sensor platform design and UV source parameters such as wavelength and power intensity. Further, it is illustrated that the gas sensing selectivity can be tuned by modifying the semiconductor layer structure or adjusting appropriate wavelength to an optimal value.  相似文献   

18.
Petrochemicals, one of the most important energy sources, contribute to the remarkable development of human civilization. Therefore, the development of a kind of fast, safe, reliable and nondestructive detection technology is essential. Terahertz (THz) spectroscopy, containing abundant physical, chemical, and structural information of materials, shows significant applications in the fields of physics, chemistry, materials science, medicine, pharmacy and biology. As a promising detection technology, THz technology provides a new reliable analytic method in liquid petrochemicals detection due to the fact that low-frequency vibrational and rotational motions of hydrocarbon molecules lie in the terahertz region. In this article, we review the applications of the liquid petrochemicals detection based on the terahertz time-domain spectroscopy (THz-TDS) system, mainly containing the analysis of molecular properties, qualitative identification, quantitative analysis and the terahertz metamaterials sensing. In addition, we propose the further exploration of terahertz technology in the field of petrochemical industry.  相似文献   

19.
Gold and silver nanomaterials (NMs) such as nanoparticles (NPs) and nanoclusters (NCs) possessing interesting optical properties have become popular sensing materials. With strong surface plasmon resonance (SPR) absorption, extraordinary stability, ease in preparation, conjugation, and biocompatibility, Au NPs are employed to develop sensitive and selective sensing systems for a variety of analytes. However, small sizes of Au and Ag NCs with interesting photoluminescence (PL) properties are used in many PL‐based sensing systems for the detection of important analytes. In addition, many bimetallic AuM NMs possessing strong catalytic activity are used to develop highly sensitive fluorescent sensors. This review article is categorized in four sections based on the NMs used in the sensing systems, including Au NPs, bimetallic AuM NMs, Au NCs, and DNA–Ag NCs. In each section, synthetic strategies and optical properties of the NMs are provided briefly, followed by emphasis on their analytical applications in the detection of small molecules, metal ions, DNA, proteins, and cells. Current challenges and future prospects of these NMs‐based sensing systems will be addressed.  相似文献   

20.
The Raman signal of gas molecules is very weak due to its small scattering cross section. Here, a near-confocal cavity-enhanced Raman detection system is demonstrated. In the cavity, a high power light of 9W is achieved by using a cw 200mW 532nm laser, which greatly enhances the detection sensitivity of gas species. A photomultiplier tube connected to a spectrometer is used as the detection system. The Raman spectra of the mixed gases separated from transformer oil has been observed. The relationship of absolute Raman intensity and gas pressure is also obtained. To our knowledge, this is the first Raman system to detect the gases separated from transformer oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号