首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Adsorption structures of the pentacene (C22H14) molecule on the clean Si(0 0 1)-2 × 1 surface were investigated by scanning tunneling microscopy (STM) in conjunction with density functional theory calculations and STM image simulations. The pentacene molecules were found to adsorb on four major sites and four minor sites. The adsorption structures of the pentacene molecules at the four major sites were determined by comparison between the experimental and the simulated STM images. Three out of the four theoretically identified adsorption structures are different from the previously proposed adsorption structures. They involve six to eight Si-C covalent chemical bonds. The adsorption energies of the major four structures are calculated to be in the range 67-128 kcal/mol. It was also found that the pentacene molecule hardly hopped on the surface when applying pulse bias voltages on the molecule, but was mostly decomposed.  相似文献   

2.
The microscopic reaction mechanism for CO oxidation on Cu(3 1 1) surface has been investigated by means of comprehensive density functional theory (DFT) calculations. The elementary steps studied include O2 adsorption and dissociation, dissociated O atom adsorption and diffusion, as well as CO adsorption and oxidation on the metal. Our results reveal that O2 is considerably reactive on the Cu(3 1 1) surface and will spontaneously dissociate at several adsorption states, which process are highly dependent on the orientation and site of the adsorbed oxygen molecule. The dissociated O atom may likely diffuse via inner terrace sites or from a terrace site to a step site due to the low barriers. Furthermore, we find that the energetically most favorable site for CO molecule on Cu(3 1 1) is the step edge site. According to our calculations, the reaction barrier of CO + O → CO2 is about 0.3 eV lower in energy than that of CO + O2 → CO2 + O, suggesting the former mechanism play a main role in CO oxidation on the Cu(3 1 1) surface.  相似文献   

3.
Geometric and electronic structures of Sm adlayers on Cu(1 0 0) and (1 1 0) were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). The present results, in addition to the previous results for Sm/Cu(1 1 1) [Y. Nakayama, H. Kondoh, T. Ohta, Surf. Sci. 552 (2004) 53], indicate that the valence state of Sm adsorbed on Cu surfaces is determined by Sm-Sm and Sm-Cu coordination numbers. We propose that the valence state of the adsorbed Sm atoms can be explained by a simple thermodynamic equation including the coordination numbers.  相似文献   

4.
M. Krawiec  M. Kisiel 《Surface science》2006,600(8):1641-1645
The electronic structure of Si(1 1 1)-(6 × 6)Au surface covered with submonolayer amount of Pb is investigated using scanning tunneling spectroscopy. Already in small islands of Pb with thickness of 1 ML Pb(1 1 1) and with the diameter of only about 2 nm we detected the quantized electronic state with energy 0.55 eV below the Fermi level. Similarly, the I(V) characteristics made for the Si(1 1 1)-(6 × 6)Au surface reveal a localized energy state 0.3 eV below the Fermi level. These energies result from fitting of the theoretical curves to the experimental data. The calculations are based on tight binding Hubbard model. The theoretical calculations clearly show prominent modification of the I(V) curve due to variation of electronic and topographic properties of the STM tip apex.  相似文献   

5.
The adsorption properties of CO on the epitaxial five-monolayer Co/Cu(1 0 0) system, where the Co overlayer has stabilized in the metastable fcc-phase, are reported. This system is known to exhibit metallic quantum well (MQW) states at energies 1 eV or greater above the Fermi level, which may influence CO adsorption. The CO/fcc-Co/Cu(1 0 0) system was explored with low energy electron diffraction (LEED), inverse photoemission (IPE), reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). Upon CO adsorption, a new feature is observed in IPE at 4.4 eV above EF and is interpreted as the CO 2π level. When adsorbed at room temperature, TPD exhibits a CO desorption peak at ∼355 K, while low temperature adsorption reveals additional binding configurations with TPD features at ∼220 K and ∼265 K. These TPD peak temperatures are correlated with different C-O stretch vibrational frequencies observed in the IR spectra. The adsorption properties of this surface are compared to those of the surfaces of single crystal hcp-Co, as well as other metastable thin film systems.  相似文献   

6.
Using a combination of scanning tunneling microscopy (STM) and density functional theory calculations, we have studied the adsorption of tetracene on the Cu(1 1 0) (2 × 1)O substrate. At monolayer coverage the adsorbed molecules are in the flat-laying geometry with their long axis along the close-packed [0 0 1] direction of the substrate and a long-range ordered structure on the length scale up to 100 nm has been observed. DFT calculation results indicate a stronger interaction between tetracene molecules and Cu(1 1 0) substrate than Cu(1 1 0) (2 × 1)O substrate. The preferential adsorption sites have also been pointed out on both substrates. The observed wavelike structure is explained by the interdigitation of C-H bonds of adjacent molecules.  相似文献   

7.
Au/TiO2/Ru(0 0 0 1) model catalysts and their interaction with CO were investigated by scanning tunneling microscopy and different surface spectroscopies. Thin titanium oxide films were prepared by Ti deposition on Ru(0 0 0 1) in an O2 atmosphere and subsequent annealing in O2. By optimizing the conditions for deposition and post-treatment, smooth films were obtained either as fully oxidized TiO2 or as partly reduced TiOx, depending on the preparation conditions. CO adsorbed molecularly on both oxidized and reduced TiO2, with slightly stronger bonding on the reduced films. Model catalyst surfaces were prepared by depositing submonolayer quantities of Au on the films and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. From X-ray photoelectron spectroscopy, a weak interaction between the Au and the TiO2 substrate was found. At 100 K CO adsorption occurred on both the TiO2 film and on the Au nanoparticles. CO desorbed from the Au particles with activation energies between 53 and 65 kJ/mol, depending on the Au coverage. If the Au deposit was annealed to 770 K prior to CO exposure, the CO adsorption energy decreased significantly. STM measurements revealed that the Au particles grow upon annealing, but are not encapsulated by TiOx suboxides. The higher CO adsorption energy observed for smaller Au coverages and before annealing is attributed to a significantly stronger interaction of CO with mono- and bilayer Au islands, while for higher particles, the adsorption energy becomes more bulk-like. The implications of these effects on the known particle size effects in CO oxidation over supported Au/TiO2 catalysts are discussed.  相似文献   

8.
A quantum modeling of the CO adsorption on illuminated anatase TiO2 (0 0 1) is presented. The calculated adsorption energy and geometries of illuminated case are compared with the ground state case. The calculations were achieved by using DFT formalism and the BH and HLYP. Upon photoexcitation, an electron-hole pair is generated. Comparing of natural population in the ground state and the exited state, shows that an electron is trapped in a Ti4+ ion and a hole is localized in an oxygen ion. The photoelectron helps generation of a CO2 molecule on the TiO2 surface. As shown by optimization of these systems, the CO molecule adsorbed vertically on the TiO2 (0 0 1) surface in the ground state case while the CO molecule made an angle of 134.3° to this surface at the excited state case. Based on the here used model the obtained adsorption energy was 0.36 eV which is in excellent agreement with the reported experimental value. In the present work the C-O stretch IR frequencies are calculated which are 1366.53 and 1423.16 cm−1. These results are in good agreement with the earlier reported works for the surface carbonaceous compounds, and oxygenated carbon species.  相似文献   

9.
The DOS structures of NiO (0 0 1;1 1 1) surfaces and CO adsorption on these surfaces have been studied with spin-unrestricted and periodic DFT (B3LYP) methods. On the basis of the analysis of orbital interaction on DOSs, the bonding properties of surface atomic orbitals have also been interpreted. It is found that CO adsorption on (0 0 1) and (1 1 1) surfaces have different mechanisms and adsorption energies. A four-electron σ orbital interaction is produced when CO is adsorbed on NiO (1 1 1), CO adsorbption on NiO (1 1 1) surface is obviously stronger than that on surface (0 0 1). It is easy for the clean NiO (1 1 1) surface to reconstruct to (2 × 2) structure, but the surface covered by CO does not undergo such a reconstruction.  相似文献   

10.
Oxygen adsorption on the α-Mo2C(0 0 0 1) surface has been investigated with X-ray photoelectron spectroscopy and valence photoelectron spectroscopy utilizing synchrotron radiation. It is found that oxygen adsorbs dissociatively at room temperature, and the adsorbed oxygen atoms interact with both Mo and C atoms to form an oxycarbide layer. As the O-adsorbed surface is heated at ≧800 K, the C-O bonds are broken and the adsorbed oxygen atoms are bound only to Mo atoms. Valence PES study shows that the oxygen adsorption induces a peculiar state around the Fermi level, which enhances the emission intensity at the Fermi edge in PES spectra.  相似文献   

11.
Density functional theory (DFT) slab calculations, mainly using the generalised gradient approximation, have been used to investigate the minimum energy structures of molecular SO2 and SO3 on Cu(1 1 1) and Ni(1 1 1) surfaces. On Ni(1 1 1) the optimal local adsorption structures are in close agreement with experimental results for both molecular species obtained using the X-ray standing wavefield technique, although for adsorbed SO2 the energetic difference between two alternative lateral positions of the lying-down molecule on the surface is marginally significant. On Cu(1 1 1) the results for adsorbed SO2, in particular, were sensitive to the DFT functional used in the calculations, but in all cases failed to reproduce the experimentally-established preference for adsorption with the molecular plane perpendicular to the surface. This result is discussed in the context of previously published DFT results for these species adsorbed on Cu(1 0 0). The optimal geometry found for SO3 on Cu(1 1 1) is similar to that on Ni(1 1 1), providing agreement with experiment regarding the molecular orientation but not the adsorption site.  相似文献   

12.
The Ga-adsorbed structure on Si(1 1 3) surface at low coverage has been studied by scanning tunneling microscopy (STM). The bright protrusion corresponding to the position of the dimer without the interstitial Si atom of the clean surface disappeared in the filled-state STM image after Ga adsorption, although the protrusion due to the Si adatom still remained. On the basis of the adatom-dimer-interstitial (ADI) model, this result indicates that the Ga atom is adsorbed interstitially at the center of another pentamer that does not have the interstitial Si atom. An ab initio calculation was performed and STM images were simulated.  相似文献   

13.
Room temperature (RT) adsorption of nitric oxide (NO) on Ir(1 1 1) was studied by scanning tunneling microscopy (STM). At low exposures, NO molecules can not be imaged by STM, because at RT the diffusion of NO is much faster than the STM scanning speed. At high exposures near the saturation coverage, however, a well-ordered 2 × 2 structure is observed. The coverage of the major 2 × 2 species is 0.25 and they can be assigned to the NO molecules adsorbed on the Ir ontop sites. A small number of less bright spots are assigned to nitrogen atoms produced by dissociation. Their number increases by annealing the NO-saturated surface at 380 K. A small number of another dissociation product, oxygen, are observed as black lines, indicating that the diffusion of oxygen atoms is fast. Scratch-like noise features were also detected by the STM, which suggests that a mobile precursor state exists, which was clearly shown by the effects of electron irradiation from the STM tip. These results are consistent with the previous molecular beam studies. Hopping of the 2 × 2 ordered NO species was frequently observed at the anti-phase domain boundaries and edges of the 2 × 2 islands.  相似文献   

14.
Since the development of Scanning Tunnelling Microscopy (STM) technique, considerable attention has been devoted to various molecules adsorbed on various surfaces. Also, a new concept emerged with molecules on surfaces considered as nano machines by themselves. In this context, a thorough knowledge of surfaces and adsorbed molecules at an atomic scale are thus particularly invaluable. The present work describes the first Density Functional Theory (DFT) study of adsorption of CO, CO2 and NO molecules on a BaTiO3 surface following a first preliminary calculation of O and O2 adsorption on the same surface. In the previously considered work, we found that a (0 0 1) surface with BaO termination is more stable than the one with TiO2-termination. Consequently, we extended our study to CO, CO2 and NO molecules adsorbed on a (0 0 1) surface with BaO termination. The present calculation was performed on a (1 × 1) cell with one monolayer of adsorbed molecules. Especially, a series of cases implying CO molecules adsorbed in various geometrical configurations has been examined. The corresponding adsorption energy varies in the range of −0.17 to −0.10 eV. The adsorption energy of a CO2 molecule directly located above an O surface atom (called Os) is of the order of −0.18 eV. The O-C distance length is then 1.24 Å and the O-C-O and O-C-Os angles are 134.0° and 113.0°, respectively. For NO adsorption, the most important induced structural changes are the followings: (i) the N-O bond is broken when a NO molecule is absorbed on a Ba-Os bridge site. In that case, N and O atoms are located above an O and a Ba surface atom, respectively, whereas the O-Ba-Os and N-Os-Ba angles are 106.5° and 63.0°, respectively. The N-O distance is as large as 2.58 Å and the adsorption energy is as much as −2.28 eV. (ii) In the second stable position, the NO molecule has its N atom adsorbed above an Os atom, the N-O axis being tilted toward the Ba atom. The N-Os-Ba angle is then 41.1° while the adsorption energy is only −0.10 eV. At last, the local densities of states around C, O as well as N atoms of the considered adsorbed molecules have also been discussed.  相似文献   

15.
Initial hydrogen adsorption on the Si(1 1 1) 7 × 7 surface was studied by scanning tunneling microscopy (STM) in an ultrahigh vacuum. Room temperature adsorbed hydrogen on the adatom in the 7 × 7 reconstruction led to depression of adatoms in the STM images. The hydrogen uptake curve at the adatom site as a function of hydrogen exposure time was well represented by Langmuir adsorption. No preferential adsorption was seen among four inequivalent adatoms in the 7 × 7 reconstruction. Adsorption of the adjacent center and corner adatoms respectively showed ∼10% higher adsorption. Even though the number of reacted adatoms in the half unit of the 7 × 7 reconstruction was statistically random, the number of reacted adatoms in the nearest neighbor half unit was enhanced as the number of reacted sites increased in the half unit.  相似文献   

16.
F. Wiame  V. Maurice  P. Marcus 《Surface science》2007,601(5):1193-1204
Several surface analysis techniques were combined to study the initial stages of oxidation of Cu(1 1 1) surfaces exposed to O2 at low pressure (<5 × 10−6 mbar) and room temperature. Scanning tunneling microscopy (STM) results show that the reactivity is governed by the restructuring of the Cu(1 1 1) surface. On the terraces, oxygen dissociative adsorption leads to the formation of isolated O adatoms and clusters weakly bound to the surface. The O adatoms are located in the fcc threefold hollow sites of the unrestructured terraces. Friedel oscillations with an amplitude lower than 5 pm have been measured around the adatoms. At step edges, surface restructuring is initiated and leads to the nucleation and growth of a two-dimensional disordered layer of oxide precursor. The electronic structure of this oxide layer is characterised by a band gap measured by scanning tunneling spectroscopy to be ∼1.5 eV wide. The growth of the oxide islands progresses by consumption of the upper metal terraces to form triangular indents. The extraction of the Cu atoms at this interface generates a preferential orientation of the interface along the close-packed directions of the metal. A second growth front corresponds to the step edges of the oxide islands and progresses above the lower metal terraces. This is where the excess Cu atoms extracted at the first growth front are incorporated. STM shows that the growing disordered oxide layer consists of units of hexagonal structure with a first nearest neighbour distance characteristic of a relaxed Cu-Cu distance (∼0.3 nm), consistent with local Cu2O(1 1 1)-like elements. Exposure at 300 °C is necessary to form an ordered two-dimensional layer of oxide precursor. It forms the so-called “29” superstructure assigned to a periodic distorted Cu2O(1 1 1)-like structure.  相似文献   

17.
In this work we have performed total-energy calculations on the geometric structure and adsorption properties of Cu(1 0 0) c(2 × 2)/N surface by using the density-functional theory and the projector-augmented wave method. It is concluded that nitrogen atom was adsorbed on a FFH site with a vertical distance of 0.2 Å towards from surface Cu layer. The bond length of the shortest Cu-N bonding is calculated to be 1.83 Å. Geometry optimization calculations exclude out the possibilities of adsorbate induced reconstruction mode suggested by Driver and Woodruff and the atop structural model. The calculated workfunction for this absorbate-adsorbent system is 4.63 eV which is quite close to that of a clean Cu(1 0 0) surface. The total-energy calculations showed that the average adsorption energy per nitrogen in the case of Cu(1 0 0) c(2 × 2)-N is about 4.88 eV with respect to an isolated N atom. The absorption of nitrogen on Cu(1 0 0) surface yields the hybridization between surface Cu atoms and N, and generates the localized surface states at −1.0 eV relative to Fermi energy EF. The stretch mode of the adsorbed nitrogen at FFH site is about 30.8 meV. The present study provides a strong criterion to account for the local surface geometry in Cu(1 0 0) c(2 × 2)/N surface.  相似文献   

18.
Štěpán Pick 《Surface science》2007,601(23):5571-5575
The regular CO overlayers at coverage θ = 1/3 adsorbed on the (0 0 0 1) surface of hcp Co and (1 1 1) surface of fcc Co are studied by first-principles density-functional theory with the exchange-correlation component in the PBE form. Adsorption in atop, bridge, and three-fold hcp or fcc position are considered. The adsorption energies, CO stretching frequencies, geometry, work function, and local magnetic moments are studied, and, when possible, compared with experimental or theoretical data. Particularly, we show that the recently proposed correction to adsorption energy of CO prefers correctly the atop adsorption site, whereas the remaining sites are almost degenerate in energy. The CO molecule lowers magnetization on neighbouring Co atoms, and the effect decreases with the adsorption site coordination. We show, however, that this trend is not the result of the different C-Co separation at different adsorption sites. A very small magnetic moment appears on CO that couples antiferromagnetically to Co. Most results are very similar for the Co(0 0 0 1) and Co(1 1 1) surfaces.  相似文献   

19.
The adsorption properties of CO on experimentally verified stepped Pt3Sn(1 0 2) surface were investigated using quantum mechanical calculations. The two possible terminations of Pt3Sn(1 0 2) were generated and on these terminations all types of possible adsorption sites were determined. The adsorption energies and geometries of the CO molecule for all those sites were calculated. The most favorable sites for adsorption were determined as the short bridge site on the terrace of pure-Pt row of the mixed-atom-ending termination, atop site at the step-edge of the pure row of pure-Pt-ending termination and atop site at the step-edge of the pure-Pt row of the mixed-atom-ending termination. The results were compared with those for similar sites on the flat Pt3Sn(1 1 0) surface considering the fact that Pt3Sn(1 0 2) has terraces with (1 1 0) orientation. The LDOS analysis of bare sites clearly shows that there are significant differences between the electronic properties of Pt atoms at stepped Pt3Sn(1 0 2) surface and the electronic properties of Pt atoms at flat (1 1 0) surface, which leads to changes in the CO bonding energies of these Pt atoms. Adsorption on Pt3Sn(1 0 2) surface is in general stronger compared to that on Pt3Sn(1 1 0) surface. The difference in adsorption strength of similar sites on these two surface terminations is a result of stepped structure of Pt3Sn(1 0 2). The local density of states (LDOS) of the adsorbent Pt and C of adsorbed CO was utilized. The LDOS of the surface metal atoms with CO-adsorbed atop and of their bare state were compared to see the effect of CO chemisorption on the electron density distribution of the corresponding Pt atom. The downward shift in energy peak in the LDOS curves as well as changes in the electron densities of the corresponding energy levels indicate the orbital mixing between CO molecular orbitals and metal d-states. The present study showed that the adsorption strength of the sites has a direct relation with their LDOS profiles.  相似文献   

20.
Using a first-principles pseudopotential technique, we have investigated the adsorption of CH3OH on the Si(0 0 1) surface. We have found that, in agreement with the overall experimental picture, the most probable chemisorption path for methanol adsorption on silicon (0 0 1) is as follows: the gas phase CH3OH adsorbs molecularly to the electrophilic surface Si atom via the oxygen atom and then dissociates into Si-OCH3 and H, bonded to the electrophilic and nucleophilic surface silicon dimer atoms, respectively. Other possible adsorption models and dissociation paths are also discussed. Our calculations also suggest that the most probable methanol coverage is 0.5 ML, i.e., one molecule per Si-Si dimer, in agreement with experimental evidences. The surface atomic and electronic structures are discussed and compared to available theoretical and experimental data. In addition, we propose that a comparison of our theoretical STM images and calculated vibrational modes for the adsorbed systems with detailed experimental investigations could possibly confirm the presented adsorption picture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号