首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dynamics of self-consistent planar axisymmetric motions of a cylindrical electron beam is investigated analytically. The beam electrons move under the action of an unneutralized space-charge field against an immobile ion background or in a vacuum in the presence of a magnetic field. The electric field strength and the electron density and velocity are determined as functions of the distance traveled by the beam electrons.  相似文献   

2.
电子注在等离子体中的运动及传输特性   总被引:9,自引:2,他引:7       下载免费PDF全文
 从填充等离子体微波管漂移空间电子运动轨迹方程出发, 详细阐述了A区和B区电子注的聚束性能, 电子围绕平衡半径在A区和B区交替波浪式前进, 波纹的周期和幅度与等离子体密度和电子运动速度有关, 此外, 对弱加速场电子传输性能的研究表明, 调节等离子体参数、电压和场强, 可实现电子注无磁场聚束传输。  相似文献   

3.
The effect of the anode-current magnetic field on the electron motion in a triode with a virtual cathode is considered. It is shown that the anode-current magnetic field influences the oscillation period and trajectories of electrons. The condition of self-isolation of the electron beam is investigated as a function of the diode parameter. It is shown that the displacement of the beam electrons under the action of the anode-current magnetic field leads to a decrease in the electron phase modulation and an increase in the spread in the electron oscillation amplitude; as a result, the generation efficiency of microwave radiation decreases.  相似文献   

4.
朱卫卫  张秋菊  张延惠  焦扬 《物理学报》2015,64(12):124104-124104
采用单电子模型和经典辐射理论分别对低能和高能电子在线偏振激光驻波场中的运动和辐射过程进行了研究. 结果表明: 垂直于激光电场方向入射的低速电子在激光驻波场中随着光强的增大, 逐渐从一维近周期运动演变为二维折叠运动, 并产生强的微米量级波长的太赫兹辐射; 高能电子垂直或者平行于激光电场方向入射到激光驻波场中, 都会产生波长在几个纳米的高频辐射; 低能电子与激光驻波场作用中, 激光强度影响着电子的运动形式、辐射频率以及辐射强度; 高能电子入射时, 激光强度影响了电子高频辐射的强度, 电子初始能量影响着辐射的频率; 电子能量越高, 产生的辐射频率越大. 研究表明可以由激光加速电子的方式得到不同能量的电子束, 并利用电子束在激光驻波场的辐射使之成为太赫兹和X射线波段的小型辐射源. 研究结果可以为实验研究和利用激光驻波场中的电子辐射提供依据.  相似文献   

5.
In the paper we theoretically investigate the mechanism by which the space of drift electrons is contracted in klystron-type bunchers which modulate the electron beam in ion accelerators, in particular to excite an rf field. The contraction of the drift length is effected through a decrease in the mean beam velocity in the field of an electrostatic lens or a metal tube and is based on the fact that the relative motion of velocity-modulated electrons are independent of the mean velocity of the electron beam in a weak modulation regime.  相似文献   

6.
The influence of the voltage pulse rise time on the amplitude of a runaway electron beam and X-ray generation in air and nitrogen under atmospheric pressure is studied experimentally and theoretically. Generalization of the whistle criterion for the case of a nonuniform field is suggested. It is shown that the maximal energy of beam electrons and the beam current amplitude grow when the voltage pulse rise time decreases. It is found that the amplitude of the runaway electron current reaches a maximum at a certain curvature of the cathode. The maximal energy of electrons increases when the radius of curvature of the cathode exceeds the value at which the beam current amplitude is the highest. If the field is nonuniform, its critical value at which many electrons run away is more than an order of magnitude lower than in the uniform field.  相似文献   

7.
在惯性约束聚变(ICF)电子束快点火物理方案中,需要超强拍瓦激光脉冲驱动MeV能量的强流电子束,并沉积数十kJ能量到压缩氘氚芯区。强流电子束的束流品质是影响点火成功的关键因素之一,为深入了解强流电子束产生物理过程,研制成了三维高性能、适应上万CPU核规模的并行粒子模拟程序,并开展了大规模数值模拟研究,探索了强流电子束的产生机制和输运规律。回顾了近几年来快点火研究团队围绕强流电子束产生和控制开展的研究,介绍了导致束流品质差的两大物理原因:预等离子体效应和束流不稳定性磁场的随机散射。针对这两个物理原因,提出了四种提高强流电子束品质的方法:(1)双层金锥靶减弱预等离子体的负面效应;(2)输运丝产生环向磁场准直强流电子束;(3)外加磁场导引强流电子束提高耦合效率;(4)抑制束流不稳定性以降低随机磁场对电子束流的散射。  相似文献   

8.
Expressions for the vector potential and components of the magnetic field induction vector of a betatron with radial comb-type poles are derived. The dynamics of the electron beam in the electromagnetic betatron field is investigated in the process of electron injection and acceleration. It is demonstrated that the azimuthally varying field engender beam beats. However, the amplitudes of beam particle oscillations during acceleration do not exceed their values estimated from the symmetric azimuthal component of the betatron magnetic field induction. The energy spectrum of accelerated electrons is not described by a normal law. In the electron energy spectrum, the relative number of electrons whose energy exceeds the average value is large. Application of poles with radial combs improves the efficiency of electron capture in acceleration. Results of investigations can find application in the development and adjustment of electron beam accelerating systems. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 27–34, October, 2005.  相似文献   

9.
为充分了解用于金刚石放大光阴极电子枪中的金刚石薄膜对初级电子束流强的放大特性及与其他因素的关系,利用VSIM软件的PIC模块对金刚石放大电子束流强的物理特性进行了数值模拟,结果给出了电子束流强的最大放大倍数与初级电子束能量、金刚石薄膜内部场强及金刚石薄膜厚度等因素的定量关系。模拟结果显示,选择合适的初级电子束能量和金刚石薄膜内部场强,电子束流强的最大放大倍数可以达到两个数量级。  相似文献   

10.
苏东  唐昌建 《物理学报》2012,61(4):42501-042501
为了进一步研究相对论电子束-离子通道辐射实验和理论的需要, 研究了相对论电子束入射中性气体以及通过碰撞电离动态加载等离子体实现对高能束流的自聚焦传输过程PIC(particle in cell) 模拟发现, 电子束电离出的离子背景能够实现对电子束的聚焦传输. 但是离子背景横向和纵向的不均匀性对束流的传输特性有显著影响. 在此基础之上, 提出了电子束在横向不均匀离子背景中传输的理论模型, 给出了束流的自聚焦条件.数值计算结果表明, 横向不均匀性会导致电子束的混合相位传输, 使得焦点附近内层电子可能跑到电子束外而被散焦损失, 这与PIC模拟的结果相符. 此外, PIC模拟还发现, 由于电子束的自聚焦, 在焦点处将电离出更多的离子而引起纵向不均匀性, 纵向不均匀性使得碰撞后的低能电子被俘获, 俘获电子效应会大幅降低电子束的传输效率. 但是俘获电子在纵向呈准周期分布, 对传输电子起到静电Wiggler场的作用, 可能实现静电Wiggler场的动态加载. 研究结果对于进一步研究电子束-等离子体系统的实验以及理论模型提出有一定的参考价值.  相似文献   

11.
A possibility of precise measurement of the electron beam energy using absorption of radiation by electrons in a homogeneous magnetic field for electrons of high energy in the range up to a few hundred GeV, was considered earlier. In this paper, with the purpose of experimental checking of this method in the range of several tens MeV of electrons energies, a possibility of measurement of absolute energy of the electron beam with a relative accuracy up to 10?4, is considered. We take into account influence of the laser beam diffraction, of the spread of electrons over energies, and of the length of formation of radiation absorption in the process of electron beam energy measurement. The laser wavelength and the length of the magnet are chosen depending on the length of photon absorption formation. It is found that the kinematical restrictions on the photon absorption process lead to the selection in angles of propagation of photons, which can be absorbed by the beam electrons. It is shown that parameters of the electron beam will noticeably not vary during the measurement of the energy.  相似文献   

12.
The effect of the self-field of an intense relativistic electron beam on its interaction with a dense medium was studied by solving a system of equations consisting of the kinetic equation for the fast electrons, the hydrodynamic equations for the plasma electrons, and Maxwell's equations for the electromagnetic field. It was assumed that the macroscopic parameters of the medium (its density, conductivity, and electron collision frequency) were independent of time. The system of equations was solved using high-order perturbation theory. The results show that a magnetic field is formed by the beam of fast electrons and to an equal degree by a current of thermalized electrons, which has not been taken into account before. It is shown also that the magnetic field of the beam affects its transmission through matter. In particular, the penetration depth of the electrons in matter and the transverse dimensions of the beam are both smaller than in a weak-current beam.Translated from Izvestiya Vysshykh Uchebnykh Zavedenii, Fizika, No. 10, pp. 19–24, October, 1987.The author deeply thanks K. A. Dergobuzov for support of the work, and A. V. Arzhannikov, V. A. Klimenko, and A. V. Lapp for useful discussions.  相似文献   

13.
A kinetic equation that describes the transverse dynamics of an axisymmetric paraxial relativistic electron beam propagating along an external magnetic field in a gas-plasma medium is derived with allowance for the influence of the self-consistent electromagnetic field on the beam, the effects related to the nonlaminar motion and rotation of the beam electrons at the exit from the injector, and the scattering and energy loss of the beam electrons in their collisions with the neutral particles of the background gas.  相似文献   

14.
We have performed a comparative numerical analysis of two methods for reducing the runaway electron beam divergence using an external magnetic field or a dielectric tube. The generation of runaway electrons takes place in an inhomogeneous medium that consists of a hot channel (spark channel, laser torch, etc.) surrounded by air under normal conditions. The model makes it possible to consistently calculate the formation of a subnanosecond gas discharge and the generation of accelerated electrons under these conditions. The possibility of effectively decreasing the runaway electron beam divergence using an external magnetic field, as well as a dielectric tube, has been demonstrated. However, the number of runaway electrons in the case with the tube is considerably smaller than in the case with the magnetic field due to the fact that some runaway electrons settle on the tube walls. The energy spectra of the runaway electrons significantly differ in these cases, which can be explained by the differences in the dynamics of the discharge formation.  相似文献   

15.
This paper presents a system of equations that describe the motion of charged particles in the electromagnetic field of a betatron. This system of equation was successfully used to study the behavior of the electron orbits and to determine the principal parameters of the electron beam in the electromagnetic field of a betatron during the electron acceleration and deceleration. The results of this study may find application in developing systems designed to accelerate electron beams. It has been shown that in the course of acceleration there is no damping of the betatron oscillations by the law B z –1/2 and, correspondingly, no decrease in beam cross section. In contrast to the existing belief, the initial departure of the kinetic energy (momentum) of the injected electrons from the energy (momentum) of the electrons following the equilibrium orbit is not preserved in the course of acceleration. In the betatron chamber, the electron beam, when accelerated, does not constrict to form a ring but occupies a broad zone, whose dimensions are determined by the initial double amplitudes of the vertical and horizontal oscillations. Despite the large double amplitude of the oscillations of the beam particles, the average energy of the electrons differs from the energy of the electrons following the equilibrium orbit only slightly, and the departure of the average energy from the energy of the equilibrium electrons varies proportionally to the (varying) field of the betatron.  相似文献   

16.
The motion of the relativistic electron beam in the spatially periodic magnetic field of an undulator has been considered taking into account the effect of the incoherent field of the spontaneous undulator radiation on the motion of the electrons. An expression for the rms momentum of the electrons has been obtained. It has been shown that the momentum spread in the ultrarelativistic electron beam increases in the spontaneous incoherent emission mode. Conditions for the self-amplification of the spontaneous undulator radiation in ultrashort-wavelength free-electron lasers have been discussed.  相似文献   

17.
 通过改变磁场位形,利用粒子模拟方法,研究了相对论速调管放大器(RKA)中电子束收集位置对器件效率和工作稳定性的影响。合适的电子束收集位置对增加输出腔区束波作用强度、减小输出腔区强流电子束的空间电荷势能以及减少RKA中反射电子数量非常有利。对一个工作频率2.85 GHz的RKA的电子束收集方式进行了改进,在电子束参数为510 keV和8.1 kA,注入微波功率500 kW和导引磁场1.5 T时,模拟得到了1.4 GW的微波输出,效率33.7%,增益33.8 dB,改进电子束收集方式之前的模拟结果为输出功率1.1 GW,效率为26.3%。利用Surperfish设计了改进收集方式后所需的磁场位形,并导入粒子模拟程序进行了模拟,实现了对电子束收集位置的有效控制,输出效率为32%。  相似文献   

18.
19.
Observations of rapid axial oscillations of an intense relativistic electron beam in a magnetic mirror are reported. The mirror field primarily provides radial confinement of the relativistic electrons. The axial confinement was achieved by placing thin aluminized mylar foils at the conjugate mirror field maxima. The region between these foils was filled with a few Torr air to provide a beam induced plasma for charge and current neutralization. The regions outside these foils were maintained at ~10-4 Torr. One foil formed the anode of a space-charge limited relativistic electron diode which launched the beam into the mirror. When the beam passed through the second foil it was no longer charge neutralized. In a manner quite similar to the anode foil oscillations observed by others, a space-charge limited electrostatic well was established which stopped the electrons and re-accelerated them through the foil-thereby reflecting the beam. When the reflected electrons re-entered the diode, they were once again "electrostatically" reflected. This process continued until the oscillating beam was either lost through the "virtual cathodes" outside the foils, dissipated in the drift region or quenched in the diode plasma after gap closure.  相似文献   

20.
Electrons were trapped in an electrostatic quadrupole trap with superimposed homogeneous magnetic field. The electrons were polarized by spin exchange with a polarized atomic beam. The free trapped electron polarization was converted to a change in the electron translational energy via spin-dependent inelastic collisions with the atomic beam, and the electron translational temperature was monitored. Discussed are the development of this variation of the measurement technique, characteristics of electron storage, and the electron-polarized atom inelastic interaction as a function of electron temperature and time. The method has been applied to the detection of the (g-2) resonance of free, stored electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号