首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We study a dynamical scheme for condensation of bosonic trapped gases beyond the Lamb-Dicke limit, when the photon-recoil energy is larger than the energy spacing of the trap. Using quantum master equation formalism we demonstrate that dark-state cooling methods similar to those designed for a single trapped atom allow for the condensation of a collection of bosons into a single state of the trap, either the ground, or an excited state. By means of Monte-Carlo simulations we analyse the condensation dynamics for different dimensions, and for different cooling schemes. Received 30 November 1998 and Received in final form 20 March 1999  相似文献   

2.
We report a study of transverse laser cooling on a metastable helium beam using spectrally broadened diode lasers (“white light") to increase its flux. For this purpose, beam profile and atomic flux versus laser power and other parameters have been characterized. We have performed experiments to compare this technique with other transverse cooling methods using monochromatic light. Best results are obtained with a “ziz-zag" configuration using “white light". Received 21 December 1998 and Received in final form 27 May 1999  相似文献   

3.
We propose a method for entangling a system of two-level atoms in photonic crystals. The atoms are assumed to move in void regions of a photonic crystal. The interaction between the atoms is mediated either via a defect mode or via a resonant dipole-dipole interaction. We show that these interactions can produce pure entangled atomic states. We analyze the problem with parameters typical for currently existing photonic crystals and Rydberg atoms and we show that the atoms can emerge from photonic crystals in entangled states. Depending on the linear dimensions of the crystal we estimate that a pair of atoms entangled in a photonic crystal can be separated by tens of centimeters. Receive 11 June 1999 and Received in final form 4 October 1999  相似文献   

4.
We study one-dimensional Sisyphus cooling on the transition of 87 Rb atoms in the electric field created by two counter-propagating linearly polarized laser beams with an angle of between the polarization directions. The neighbouring F '=0 and F '=2 excited states are found to play an important role in the cooling mechanism, e.g., by inhibiting a significant population of the velocity-selective dark state. Our experimental data, such as temperatures and probe absorption coefficients, agree well with the results of quantum Monte-Carlo wavefunction simulations. Received 26 November 1998 and Received in final form 20 April 1999  相似文献   

5.
We investigate the entanglement of an open tripartite system where a cavity field mode in thermal equilibrium is off-resonantly coupled with two atoms that are simultaneously driven by a resonant coherent field. For moderately detuned atom-field coupling and strong atomic driving we show the generation, at given interaction times and for low enough cavity decay rates, of atomic Bell states and of Bell state superpositions relevant for quantum gates implementation. The system can oscillate between bi-separable and fully separable states. Also we describe the distribution of quantum correlations between the atom-atom and the two atom-field subsystems. In the dispersive coupling regime with strongly driven atoms we show the generation of nearly stationary Bell states which remain protected from cavity dissipation.  相似文献   

6.
7.
We describe how tightly confining magnetic waveguides for atoms can be created with microfabricated or nanofabricated wires. Rubidium atoms guided in the devices we have fabricated would have a transverse mode energy spacing of K. We discuss the creation of a single-mode waveguide for atom interferometry whose depth is comparable to magneto-optical trap (MOT) temperatures. We also discuss the application of microfabricated waveguides to low-dimensional systems of quantum degenerate gases, and show that confinement can be strong enough to observe fermionization in a strongly interacting bosonic ensemble. Received 1st December 1998 and Received in final form 23 February 1999  相似文献   

8.
We have constructed a magneto-optical funnel for He atoms and studied its properties using a laser cooled, highly mono-energetic atomic beam. A simple model of its action allows us to quantitatively understand the observed spot size and “focal length”. We show that for a fast beam, the velocity damping coefficient plays an important role in determining the focal length of the device. The observed spot size is limited mainly by transverse heating processes which impose a transverse velocity spread. The device also permits easy scanning of the focussed spot. Received 30 October 1998 and Received in final form 27 January 1999  相似文献   

9.
Using a quantum theory for an ensemble of two- or three-level atoms driven by electromagnetic fields in an optical cavity, we show that the various spins associated with the atomic ensemble can be squeezed. Two kinds of squeezing are obtained: on the one hand self-spin squeezing when the input fields are coherent ones and the atomic ensemble exhibits a large non-linearity; on the other hand squeezing transfer when one of the incoming fields is squeezed. Received 14 August 2001 and Received in final form 7 November 2001  相似文献   

10.
We solve the dynamics of an open quantum system where N strongly driven two-level atoms are equally coupled on resonance to a dissipative cavity mode. Analytical results are derived on decoherence, entanglement, purity, atomic correlations and cavity field mean photon number. We predict decoherencefree subspaces for the whole system and the N-qubit subsystem, the monitoring of quantum coherence and purity decay by atomic populations measurements, the conditional generation of atomic multi-partite entangled states and of cavity cat-like states. We show that the dynamics of atoms prepared in states invariant under permutation of any two components remains restricted within the subspace spanned by the completely symmetric Dicke states. We discuss examples and applications in the cases N = 3, 4. An erratum to this article can be found at  相似文献   

11.
We propose a simple method to obtain a superposition of coherent states on a circle, including Schr?dinger cat states as a special case, via conditional measurement of the state of three level atoms interacting with a one mode cavity field. In the low amplitude limit, very good approximation of Fock states can also be generated in this way. Received: 8 October 1998 / Accepted: 30 October 1998  相似文献   

12.
We report on a theoretical and experimental investigation of 39K magneto-optical trapping. The small hyperfine splitting characterizing the upper level of the cooling transition affects the cooling mechanism. In order to model the atom-laser interaction, the whole level structure of the D2 line has to be taken into account. Two different regimes have been recognized, one optimizing the loading of the trap, the second minimizing the temperature of the atoms. We investigated these two regimes experimentally and found results in agreement with the theoretical predictions. Received: 6 March 1998 / Received in final form: 13 May 1998 / Accepted: 13 May 1998  相似文献   

13.
An electrodynamic trap is proposed that stores cold neutral atoms or nonpolar molecules in their ground state as well as in excited states by means of the quadratic Stark effect. The trap uses an oscillating hexapole field and a superposed static homogeneous field. The dynamics of an atom in this trap can be described as a harmonic oscillation in a static pseudopotential. Stability criteria and sample parameters for a number of atomic species are given. Received: 7 August 1998 / Received in final form: 7 January 1999  相似文献   

14.
15.
We present a self-consistent method of taking into account back action of a laser radiation to a Bose-Einstein condensate of neutral atoms. The light is coherently scattered inside the degenerate atomic sample, thus its intensity and, consequently, the atomic ground level AC Stark shift are spatially varying. This leads to a small deformation of the atomic cloud and, if the external radiation is abruptly switched off, to generation of collective excitations. Received 8 May 1999 and Received in final form 11 October 1999  相似文献   

16.
We propose a method to create macroscopic superpositions, so-called Schr?dinger cat states, of different motional states of an ideal Bose-Einstein condensate. The scheme is based on the scattering of a freely expanding condensate by the light field of a high-finesse optical cavity in a quantum superposition state of different photon numbers. The atom-photon interaction creates an entangled state of the motional state of the condensate and the photon number, which can be converted into a pure atomic Schr?dinger cat state by operations only acting on the cavity field. We discuss in detail the fully quantised theory and propose an experimental procedure to implement the scheme using short coherent light pulses. Received 26 June 2000 and Received in final form 2nd October 2000  相似文献   

17.
Over the past three years we have developed the technique of buffer-gas cooling and loading of atoms and molecules into magnetic traps. Buffer-gas cooling relies solely on elastic collisions (thermalization) of the species-to-be-trapped with a cryogenically cooled helium gas and so is independent of any particular energy level pattern. This makes the cooling technique general and potentially applicable to any species trappable at the temperature of the buffer gas (as low as 240 mK). Using buffer-gas loading, paramagnetic atoms (europium and chromium) as well as a molecule (calcium monohydride) were trapped at temperatures around 300 mK. The numbers of the trapped atoms and molecules were respectively about 1012 and 108. The atoms and molecules were produced by laser ablation of suitable solid precursors. In conjunction with evaporative cooling, buffer-gas loaded magnetic traps offer the means to further lower the temperature and increase the density of the trapped ensemble to study a large variety of both static (spectra) and dynamic (collisional cross-sections) properties of many atoms and molecules at ultra-low temperatures. In this article we survey our main results obtained on Cr, Eu, and CaH and outline prospects for future work. Received 2 November 1998 and Received in final form 19 February 1999  相似文献   

18.
In a recent experiment the progressive decoherence of a mesoscopic superposition of two coherent field states in a high-Q cavity, known as Schr?dinger cat state, has been measured for the first time [Brune et al., Phys. Rev. Lett. 77, 4887 (1996)]. Here, the full master equation governing the coupled dissipative dynamics of the atom-field system studied in the experiment is formulated and solved numerically for the experimental parameters. The model simulated avoids the approximations underlying an analytically solvable model which is based on a harmonic expansion of the energies of the dressed atomic states and on a treatment of their dynamics within the adiabatic approximation. In particular, the numerical simulations reveal that the coupling of the cavity field mode to its environment causes important decoherence effects already during the initial preparation phase of the Schr?dinger cat state. This phenomenon is investigated in detail with the help of a measure for the purity of states. Moreover, the Hilbert-Schmidt distance of the intended target state, the Schr?dinger cat, to the state that is actually prepared in the experiment is determined. Received 13 September 2000 and Received in final form 22 December 2000  相似文献   

19.
We investigate the phase probability distribution (PPD) of a single-mode micromaser pumped by atoms injected in the most general case, i.e. in the superposition of the upper, intermediate and lower states by the Monte Carlo wave function approach. The phase properties of the cavity mode are greatly influenced by the relative phases and the amplitudes of the polarized atoms, and the detunings between the atom and cavity. The cavity field has a single preferred phase if the cavity is pumped by the atoms in the superposition of the upper and intermediate states or of the intermediate and lower states. However, a double-peak feature appears in the PPD of the cavity field when the cavity is pumped by the atoms in the superposition of the upper and lower states. With appropriate detunings, the double peaks become narrower and more remarkable, which shows the better defined phase of the cavity field, as compared to the resonant case. The PPD displays complicated characteristics when the cavity is pumped by the atoms in the superposition of the upper, intermediate and lower states. The phase distribution changes from a single peak to double peaks and to another single peak when we modulate the phase of the intermediate state, which has been explained in the semi-classical radiation theory.  相似文献   

20.
Frequency conversion process is studied in a medium of atoms with a configuration of levels, where transition between two lower states is driven by a microwave field. In this system, conversion efficiency can be very high by virtue of the effect of electromagnetically induced transparency (EIT). Depending on intensity of the microwave field, two regimes of EIT are realized: “dark-state” EIT for the weak field, and Autler-Townes-type EIT for the strong one. We study both cases via analytical and numerical solution and find optimum conditions for the conversion. Received 13 December 1999 and Received in final form 6 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号