首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Bitar Y  Holzgrabe U 《Electrophoresis》2007,28(15):2693-2700
CD-modified microemulsion EKC as a CE technique has been applied to the chiral separation of atropine, scopolamine, ipratropium and homatropine. Enantioseparations of these tropa alkaloids were optimized by using a standard oil-in-water (O/W) microemulsion and varying the nature and concentration of CD additives as well as of the organic modifier (methanol, 2-propanol or ACN) whilst keeping the applied voltage of 15 kV and capillary temperature of 30 degrees C constant. The standard (O/W) microemulsion BGE solution consisted of 0.8% w/w octane, 6.6% w/w 1-butanol, 2.0% w/w SDS and 90.6% w/w 10 mM sodium tetraborate buffer (pH 9.2). Enantioseparations with high resolution and short migration times of all tropa alkaloids were achieved by using heptakis(2,3-di-O-methyl-6-O-sulfo)-beta-CD and sulfated beta-CD in the microemulsion BGE and were superior to corresponding CD-modified CE methods.  相似文献   

2.
A simple solid phase extraction (SPE) method coupled with high performance liquid chromatography (HPLC) using UV detector and microemulsion electrokinetic chromatography (MEEKC) has been developed and compared for the quantitative determination of miconazole nitrate in pharmaceutical formulation. For HPLC method, two parameters were optimized, namely, the wavelength and the mobile phases. The optimized condition was at the 225 nm wavelength and the mobile phase of ACN:MeOH (90:10 v/v). There are seven MEEKC parameters that were optimized, in this research, which were applied to voltage, temperature, wavelength, sodium dodecyl sulfate (SDS) concentration, buffer pH, buffer concentration and butan-1-ol concentration. The optimum MEEKC condition was obtained using 86.35 % (w/w) 2.5 mM borate buffer pH 9, 0.25 % (w/w) SDS, 0.8 % (w/w) ethyl acetate, 6.6 % w/w butan-1-ol and 6.0 % (w/w) acetonitrile. The combination of SPE using a diol column with HPLC–UV and the MEEKC methods were successfully applied for the determination of miconazole nitrate in a pharmaceutical formulation with the recovery percentage of 98.35 and 92.50 %, respectively.  相似文献   

3.

A simple solid phase extraction (SPE) method coupled with high performance liquid chromatography (HPLC) using UV detector and microemulsion electrokinetic chromatography (MEEKC) has been developed and compared for the quantitative determination of miconazole nitrate in pharmaceutical formulation. For HPLC method, two parameters were optimized, namely, the wavelength and the mobile phases. The optimized condition was at the 225 nm wavelength and the mobile phase of ACN:MeOH (90:10 v/v). There are seven MEEKC parameters that were optimized, in this research, which were applied to voltage, temperature, wavelength, sodium dodecyl sulfate (SDS) concentration, buffer pH, buffer concentration and butan-1-ol concentration. The optimum MEEKC condition was obtained using 86.35 % (w/w) 2.5 mM borate buffer pH 9, 0.25 % (w/w) SDS, 0.8 % (w/w) ethyl acetate, 6.6 % w/w butan-1-ol and 6.0 % (w/w) acetonitrile. The combination of SPE using a diol column with HPLC–UV and the MEEKC methods were successfully applied for the determination of miconazole nitrate in a pharmaceutical formulation with the recovery percentage of 98.35 and 92.50 %, respectively.

  相似文献   

4.
Microemulsion electrokinetic capillary chromatography (MEEKC) in a suppressed electroosmotic flow (EOF) strategy was investigated for analysing a group of nonsteroidal anti-inflammatory drugs (NSAIDs) in water samples. The EOF was effectively suppressed with an acidic buffer as the aqueous phase. Four water immiscible solvents, oils (n-heptane, n-octane, ethyl acetate and di-n-butyl tartrate) and three organic solvents (methanol, 2-propanol and acetonitrile) were tested to optimise the pseudostationary phase and to obtain efficient separations. The optimum microemulsion background electrolyte (BGE) solution consisted of 0.8% (w/w) n-heptane, 6.6 (w/w) butan-1-ol, 15.0% (w/w) acetonitrile, 3.3% (w/w) sodium dodecyl sulfate (SDS), and 74.3% (w/w) of 25 mM sodium phosphate at pH 2.5. Stacking with reverse migrating pseudostationary phase (SRMP) was applied to enhance the concentration sensitivity of the NSAIDs. When this preconcentration technique was used, the sample stacking and the separation processes took place successively with the same voltage without an intermediate polarity switching step. Detection limits (LODs) in the order of 5–15 μg L−1 for the NSAIDs were obtained using SRMP for standard solutions. The developed method was validated for the analysis of NSAIDs in tap water samples by combining an off-line solid-phase extraction (SPE) step and the on-column preconcentration technique SRMP. The LODs were in the 100–230 ng L−1 range.  相似文献   

5.
A microemulsion electrokinetic chromatography (MEEKC) method has been developed and validated for the determination of folic acid, a water-soluble vitamin, in a commercial tablet formulation. The analysis was performed using a microemulsion containing 0.5% (w/w) ethyl acetate, 1.2% (w/w) butan-1-ol, 0.6% (w/w) sodium dodecyl sulfate, 15% (v/v) 2-propanol and 82.7% (w/w) 10 mmol L(-1) sodium tetraborate aqueous buffer at pH 9.2. Direct UV detection at 214nm led to an adequate sensitivity without interference from sample excipients. For quantitative purposes, niacin was used as internal standard. Acceptable precision (<1.2% relative standard deviation (R.S.D.)), linearity (r = 0.9992; range from 160.0 to 240.0 microg/mL), sensitivity (limit of detection (LOD) = 2.98 microg/mL; limit of quantification (LOQ) = 9.05 microg/mL) and recovery (99.8 +/- 1.8% at three concentration levels) were obtained. Based on the performance characteristics, the proposed methodology was found suitable for the determination of folic acid in tablet formulations.  相似文献   

6.
Yu LS  Xu XQ  Huang L  Ling JM  Chen GN 《Electrophoresis》2008,29(3):726-733
A selective and sensitive method of microemulsion EKC (MEEKC) with electrochemical detection (ED) was developed for separation and determination of 14 flavonoids. In order to obtain the better stability for the studied flavonoids, oil (ethyl acetate) with low interfacial surface tension was employed as organic solvent. A running buffer composed of 0.9% (w/v, 30 mM) SDS, 0.9% (w/v, 21 mM) sodium cholate (SC), 0.9% (w/v, 121 mM) butan-1-ol, 0.6% (w/v, 68 mM) ethyl acetate, and 98.2% v/v 10 mM Na(2)B(4)O(7)-20 mM H(3)BO(3) buffer (pH 7.5) was applied for the separation of flavonoids. Under the optimum conditions, the relationship between peak currents and analyte concentrations was linear over about 1.3 and 1.7 orders of magnitude with detection limits (defined as S/N = 3) ranging from 0.02 to 0.5 microg/mL for all analytes. This method was applied for the determination of flavonoids in real samples with simple extraction procedures, and the assay results were satisfactory.  相似文献   

7.
A microemulsion electrokinetic chromatographic (MEEKC) method has been developed and validated for determination of resibufogenin and cinobufagin in toad venom and in traditional Chinese medicine prepared from the venom. The MEEKC method involved use of sodium dodecyl sulfate (SDS) as surfactant, heptane as organic solvent, and butan-1-ol as co-solvent. To improve the separation, the effect of temperature and running buffer pH were evaluated. The optimized conditions (heptane 0.81% (w/w), SDS 3.31% (w/w), butan-1-ol 6.61% (w/w), and 10 mmol L−1 sodium tetraborate buffer, pH 9.2, and 298 nm as the detection wavelength) enabled useful and repeatable separation of the analytes.  相似文献   

8.
For the first time, a capillary electrophoretic (CE) method with sample stacking induced by a reverse migrating pseudostationary phase (SRMP) technique has been developed and validated for sensitive determination of phenobarbital (PB) and its p-hydroxyphenobarbital (PHPB) metabolite in rat urine samples. Separation and determination were optimized on a fused-silica capillary with a total length of 50 cm (effective length 40 cm) and 75 μm ID. The microemulsion background electrolyte consisted of 0.8% (v/v) ethyl acetate, 6.6% (v/v) butan-2-ol, 1.0% (v/v) acetonitrile, 2.0% (w/v) sodium n-dodecyl sulfate (SDS), and 89.6% (v/v) of 7.5 mM ammonium formate at pH 8. When this preconcentration technique was used, the sample stacking and the separation processes took place successively with changing the voltage with an intermediate polarity switching step. For practical application, a solid-phase extraction (SPE), C(18) sorbent with n-hexane/ethyl acetate (1?:?1%, v/v) as the elution solvent was used for sample purification and concentration. The SPE method gave good extraction yields for all the analytes, with absolute recovery values of 96.9% and 99.1% for PB and PHPB, respectively. The regression equations for PB and PHPB showed excellent linearity over a concentration range of 55-1386 ng mL(-1) for PB and PHPB (r = 0.998). The developed microemulsion electrokinetic capillary chromatography (MEEKC) method for separation of the studied compounds with SRMP as the electrophoretic preconcentration technique allowed detection limits in urine samples at 16.8 ng mL(-1) for PB and PHPB which are 15-fold lower than the reported CE method in the literature. The precision results, expressed by the intra-day and inter-day relative standard deviation (RSD) values range from 3.6 to 7.1% (repeatability) and from 3.2 to 7.2% (intermediate precision) for PB and PHPB, respectively, which were in line with Food and Drug Administration (FDA) criteria.  相似文献   

9.
Microemulsion electrokinetic capillary chromatography has been successfully applied to the separation and determination of water-soluble vitamins (thiamine hydrochloride, riboflavin, niacin, pyridoxine hydrochloride, folic acid, cobalamin, ascorbic acid) and a fat-soluble vitamin (α-tocopherol acetate). The optimal microemulsion buffer contained sodium dodecylsulfate (SDS) as surfactant, butan-1-ol as the co-surfactant, ethyl acetate as the oil and pH 9.2 tetraborate buffer, modified with 15% (v/v) 2-propanol. UV detection at 214 nm gave adequate sensitivity without interference from sample excipients. Under the optimized conditions, the vitamins were baseline separated in less than 7 min. Analytical curves of peak area versus concentration presented coefficients of determination (R 2 ) > 0.99, acceptable limits of quantification between 8.40 and 16.23 μg mL?1 were obtained. Vitamin levels in liquid formulation were quantified with intra-day precision better than 0.99% RSD for migration time and 1.19% RSD for peak area ratio. Recoveries ranged between 98.7 and 101.7%. The method was considered appropriate for rapid and routine analysis.  相似文献   

10.
Microemulsion electrokinetic capillary chromatography (MEEKC) with sample stacking induced by reverse migrating pseudostationary phase (SRMP) technique in a suppressed electro-osmotic flow (EOF) strategy was investigated for analysing the new ultra-short hypnotic HIE-124 in mice serum. The proposed method utilized fused-silica capillary with a total length of 50 cm (effective length 40 cm), applied voltages for stacking and separation were 5.0 kV for 4.30 min and subsequently 25 kV, respectively, with a sample injection of 0.5 psi for 90 s. All the runs were carried out at 25 °C and detected at 213 nm. The optimum microemulsion background electrolyte (BGE) solution consisted of 0.8% (v/v) ethyl acetate, 6.6% (v/v) butan-2-ol, 1.0% (v/v) acetonitrile, 2.0% (w/v) sodium dodecyl sulfate (SDS), and 89.6 mL with 25 mM phosphate buffer pH 8. When this preconcentration technique was used, the sample stacking and the separation processes took place successively with changing the voltage with an intermediate polarity switching step. The proposed method was validated carefully with respect to high specificity of the method, good linearity (r = 0.9994), fair wide linear concentration range (66-1500 ng mL−1), limit of detection and quantitation were 21.6 and 65.5 ng mL−1, respectively. The mean relative standard deviation (RSD) of the results of intra- and inter-day precision and accuracy were less than 6.0%, and overall recovery higher than 95% of HIE-124 in mice serum. The developed method could be used for the trace analyses of HIE-124 in serum and was finally used for the pharmacokinetic study investigation of HIE-124 in mice serum.  相似文献   

11.
A microemulsion electrokinetic chromatographic (MEEKC) method was developed for the separation of six catechins, specific marker phytochemicals of Cistus species. The MEEKC method involved the use of sodium dodecyl sulfate (SDS) as surfactant, heptane as organic solvent and butan-1-ol as co-solvent. In order to have a better stability of the studied catechins, the separation was performed under acidic conditions (pH 2.5 phosphate buffer). The effects of SDS concentration and of the amount of organic solvent and co-solvent on the analyte resolution were evaluated. The optimized conditions (heptane 1.36% (w/v), SDS 2.31% (w/v), butan-1-ol 9.72% (w/v) and 50 mM sodium phosphate buffer (pH 2.5) 86.61% (w/v)) allowed a useful and reproducible separation of the studied analytes to be achieved. These conditions provided a different separation profile compared to that obtained under conventional micellar electrokinetic chromatography (MECK) using SDS. The method was validated and applied to the determination of catechin and gallocatechin in lyophilized extracts of Cistus incanus and Cistus monspeliensis.  相似文献   

12.
Pai YF  Lin CC  Liu CY 《Electrophoresis》2004,25(4-5):569-577
A wall-coated histidine capillary column was developed for the on-line preconcentration of nonsteroidal anti-inflammatory drugs (NSAIDs) in capillary electrochromatography (CEC). A wide variety of experimental parameters, such as the sample buffer, background electrolyte (BGE) composition, concentration, sample plug lengths, water plug, and the effect of organic modifiers were studied. The relationship between peak height and injection times for the NSAIDs by variation of sample and BGE buffer concentration was investigated. On addition of sodium chloride (0.3-0.6%) to the sample zone, the stacking efficiency was increased. With acetate buffer (100 mM, pH 5.0)/ethanol (20% v/v) as BGE and sample solution in acetate buffer (0.2 mM, pH 5.0)/ethanol (20% v/v)/NaCl (0.3% w/v), NSAIDs could be determined at low microM levels without sample matrix removal. The detection limit was 0.096 microM for indoprofen, 0.110 microM for ketoprofen, 0.012 microM for naproxen, 0.023 microM for ibuprofen, 0.110 microM for fenoprofen, 0.140 microM for flurbiprofen, and 0.120 microM for suprofen. The method could be successfully applied to the simultaneous determination of NSAIDs in urine. The recoveries were better than 82% for all the analytes. The present method enables simple manipulation with UV detection for the determination of NSAIDs at low concentration levels in complex matrix samples.  相似文献   

13.
A microemulsion electrokinetic chromatographic (MEEKC) method was developed for the separation of six catechins, specific marker phytochemicals of Cistus species. The MEEKC method involved the use of sodium dodecyl sulfate (SDS) as surfactant, heptane as organic solvent and butan-1-ol as co-solvent. In order to have a better stability of the studied catechins, the separation was performed under acidic conditions (pH 2.5 phosphate buffer). The effects of SDS concentration and of the amount of organic solvent and co-solvent on the analyte resolution were evaluated. The optimized conditions (heptane 1.36% (w/v), SDS 2.31% (w/v), butan-1-ol 9.72% (w/v) and 50 mM sodium phosphate buffer (pH 2.5) 86.61% (w/v)) allowed a useful and reproducible separation of the studied analytes to be achieved. These conditions provided a different separation profile compared to that obtained under conventional micellar electrokinetic chromatography (MECK) using SDS. The method was validated and applied to the determination of catechin and gallocatechin in lyophilized extracts of Cistus incanus and Cistus monspeliensis.  相似文献   

14.
Microemulsion electrokinetic capillary chromatography (MEEKC) is a capillary electrophoresis technique in which neutral and ionized species can be resolved according to their partitioning into moving oil droplets present in the operating buffer. In this report, we present for the first time the application of MEEKC in the analysis of glycosaminoglycans. An efficient method for the separation of the variously sulfated delta-disaccharides obtained following digestion of chondroitin and dermatan sulfates with chondro/ dermato lyases and derivatization with 2-aminoacridone is described. Nonsulfated, mono-, di-, and trisulfated delta-disaccharides were completely separated using the microemulsion octane/butan-1-ol/Sodium dodecyl sulfate (SDS) in 10 mM borate buffer, pH 9.3, at 25 kV. Agreement of the obtained disaccharide composition with literature values showed that MEEKC can be used for the analysis of glycosaminoglycans.  相似文献   

15.
建立了微乳液毛细管电动色谱同时分析消炎利胆片中穿心莲内酯和脱水穿心莲内酯的方法。考察了缓冲溶液的浓度、pH值、十二烷基硫酸钠(SDS)以及助表面活性剂的含量对分离测定的影响。在由乙酸乙酯-SDS-正丁醇-30 mmol/L硼砂缓冲液(pH 9.5)(质量比为0.5∶0.6∶6.0∶92.9)组成的微乳液体系中,两种内酯在6 min内完成分离。该法简便、快速、选择性好,用于实际样品中穿心莲内酯和脱水穿心莲内酯的分析,获得了满意的结果。  相似文献   

16.
Microemulsion electrokinetic chromatography (MEEKC) using 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4) ionic liquid (IL) as additive was developed for the analysis of baicalin, wogonin and baicalein in Scutellariae radix and its preparation. After conducting a series of optimizations, baseline separation was obtained for the analytes within 5min under the optimum conditions (sodium dodecyl sulfate (SDS) 0.88% (m/v) ethyl acetate 0.8% (v/v) butan-1-ol 0.2% (v/v) and the buffer composition were 25% acetonitrile (v/v), 7.5 mM BMIM-BF4 and 10 mM NaH2PO4, pH 8.2, applied voltage 17.5 kV and detection at 254 nm), the method has been successfully applied to the determination and quantification of the analytes in the extracts of S. radix (cooked), S. radix (raw) and Qingfeiyihuowan which was the preparation including S. radix.  相似文献   

17.
Chen Z  Lin Z  Zhang L  Cai Y  Zhang L 《The Analyst》2012,137(7):1723-1729
A novel method of microemulsion electrokinetic capillary chromatography (MEEKC) coupled with on-line large volume sample stacking was developed for the analysis of six plant hormones including indole-3-acetic acid, indole-3-butyric acid, indole-3-propionic acid, 1-naphthaleneacetic acid, abscisic acid and salicylic acid. Baseline separation of six plant hormones was achieved within 10 min by using the microemulsion background electrolyte containing a 97.2% (w/w) 10 mM borate buffer at pH 9.2, 1.0% (w/w) ethyl acetate as oil droplets, 0.6% (w/w) sodium dodecyl sulphate as surfactant and 1.2% (w/w) 1-butanol as cosurfactant. In addition, an on-line concentration method based on a large volume sample stacking technique and multiple wavelength detection was adopted for improving the detection sensitivity in order to determine trace level hormones in a real sample. The optimal method provided about 50-100 fold increase in detection sensitivity compared with a single MEEKC method, and the detection limits (S/N = 3) were between 0.005 and 0.02 μg mL(-1). The proposed method was simple, rapid and sensitive and could be applied to the determination of six plant hormones in spiked water samples, tobacco leaves and 1-naphthylacetic acid in leaf fertilizer. The recoveries ranged from 76.0% to 119.1%, and good reproducibilities were obtained with relative standard deviations (RSDs) less than 6.6%.  相似文献   

18.
Cao J  Dun WL 《Talanta》2011,84(1):155-159
In this report, a novel means for the separation and sweeping of flavonoids (quercetin, rutin, calycosin, ononin and calycosin-7-O-β-d-glucoside) by microemulsion electrokinetic chromatography using mixed anionic and cationic surfactants as modified pseudostationary phase was presented. The optimized background electrolyte consisted of 0.5% (w/v) ethyl acetate, 2.0% (w/v) SDS, 9 mM DTAC, 4.0% (w/v) 1-butanol and 10 mM sodium borate or 25 mM phosphoric acid. We systematically investigated the separation and preconcentration conditions, including the concentrations of surfactant, types of sweeping, sample matrix, the effect of high salt or acetonitrile, and sample injection volume. It was found that the use of mixed surfactants significantly enhanced the separation efficiency through the change of the efficient electrophoretic mobility of analytes. Compared with normal sample injection, 185-508-fold sensitivity enhancement in terms of limit of detection was achieved through effective sweeping of large sample volume at 50 mbar pressure (up to 45% capillary length). At last, the proposed method was suitable for the determination of Radix Astragali sample.  相似文献   

19.
A comparison between chiral cyclodextrin‐modified microemulsion electrokinetic chromatography (CD‐MEEKC) and cyclodextrin‐modified micellar electrokinetic chromatography (CD‐MEKC) for the enantiomeric separation of esbiothrin was carried out. For both methods, the separation conditions were optimized by varying CD types and concentration, running buffer pH and compositions, organic modifiers, and temperature. The optimal CD‐MEEKC conditions were 0.8% n‐heptane, 2.3% SDS, 6.6% n‐butanol, 90.3% 10 mM sodium tetraborate containing 3% (w/v, the ratio of CD mass to microemulsion volume) methyl‐β‐cyclodextrin, pH 10, 25°C. The optimized CD‐MEKC conditions were 3.3% SDS, 96.7% 10 mM sodium tetraborate containing 5% (w/v) β‐CD, pH 10, 25°C. The difference in physicochemical properties of the buffer and CDs resulted in different optimal CD type. The competitive distribution between the microemulsion (or micelle) and chiral CD contributed to the chiral separation. Both methods provided excellent separation (Rs ~? 3) with similar migration time (ca. 15 min). CD‐MEEKC provided higher separation efficiencies (>300000) than CD‐MEKC (>200000). The LODs for CD‐MEEKC and CD‐MEKC were 4.7 μg/mL and 3.2 μg/mL, respectively. The RSDs of migration time and peak area for CD‐MEEKC were slightly higher than for CD‐MEKC. Both the demonstrated CD‐MEEKC and CD‐MEKC methods provided high efficiencies, low LODs, and reproducible enantioseparations of esbiothrin.  相似文献   

20.
Zhou L  Wang W  Wang S  Hui Y  Luo Z  Hu Z 《Analytica chimica acta》2008,611(2):212-219
A novel method based on separation by nonaqueous capillary electrophoresis (NACE) combined with laser-induced fluorescence (LIF) detection was developed and compared with classic aqueous modes of electrophoresis in terms of resolution of solutes of interest and sensitivity of the fluorescence detection. Catecholamines derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) were chosen as test analytes for their subtle fluorescence properties. In aqueous systems, capillary zone electrophoresis (CZE) was not suitable for the analysis of test analytes due to complete fluorescence quenching of NBD-labeled catecholamines in neat aqueous buffer. The addition of micelles or microemulsion droplets into aqueous running buffer can dramatically improve the fluorescence response, and the enhancement seems to be comparable for micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC). As another alternative, NACE separation was advantageous when performing the analysis under the optimum separation condition of 20 mM sodium tetraborate, 20 mM sodium dodecyl sulfate (SDS), 0.1% (v/v) glacial acetic acid, 20% (v/v) acetonitrile (ACN) in methanol medium after derivatization in ACN/dimethyl sulfoxide (DMSO) (3:2, v/v) mixed aprotic solvents containing 20 mM ammonium acetate. Compared with derivatization and separation in aqueous media, NACE-LIF procedure was proved to be superior, providing high sensitivity and short migration time. Under respective optimum conditions, the NACE procedure offered the best fluorescence response with 5-24 folds enhancement for catecholamines compared to aqueous procedures. In addition, the mechanisms of derivatization and separation in nonaqueous media were elucidated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号