首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigate a semi-smooth Newton method for the numerical solution of optimal control problems subject to differential-algebraic equations (DAEs) and mixed control-state constraints. The necessary conditions are stated in terms of a local minimum principle. By use of the Fischer-Burmeister function the local minimum principle is transformed into an equivalent nonlinear and semi-smooth equation in appropriate Banach spaces. This nonlinear and semi-smooth equation is solved by a semi-smooth Newton method. We extend known local and global convergence results for ODE optimal control problems to the DAE optimal control problems under consideration. Special emphasis is laid on the calculation of Newton steps which are given by a linear DAE boundary value problem. Regularity conditions which ensure the existence of solutions are provided. A regularization strategy for inconsistent boundary value problems is suggested. Numerical illustrations for the optimal control of a pendulum and for the optimal control of discretized Navier-Stokes equations conclude the article.  相似文献   

2.
The relations between the necessary minimum conditions in an optimal control problem (Pontryagin maximum principle), the minimum conditions in the corresponding relaxation (weakened) problem, and sufficient conditions for the local controllability of the controlled system specifying the constraints in the original formulation are studied. An abstract optimization problem that models the basic properties of the optimal control problem is considered.  相似文献   

3.
We derive second-order sufficient optimality conditions for discontinuous controls in optimal control problems of ordinary differential equations with initial-final state constraints and mixed state-control constraints of equality and inequality type. Under the assumption that the gradients with respect to the control of active mixed constraints are linearly independent, the sufficient conditions imply a bounded strong minimum in the problem.  相似文献   

4.
The concept of a K-gradient, introduced in Ref. 1 in order to generalize the concept of a derived convex cone defined by Hestenes, is extended to weak multiobjective optimization problems including not only a state variable, but also a control variable. The new concept is employed to state multiplier rules for the local solutions of such dynamic multiobjective optimization problems. An application of these multiplier rules to the local solutions of an abstract multiobjective optimal control problem yields general necessary optimality conditions that can be used to derive concrete maximum principles for multiobjective optimal control problems, e.g., problems described by integral equations with additional functional constraints.  相似文献   

5.
An optimal control problem for semilinear hyperbolic partial differential equations is considered. The control variable appears in coefficients. Necessary conditions for optimal controls are established by method of two-scale convergence and homogenized spike variation. Results for problems with state constraints are also stated.  相似文献   

6.
An optimal control problem involving nonlinear hyperbolic partial differential equations, which includes restrictions on controls and equality and inequality constraints on the terminal states, is formulated. Using this problem, a framework for obtaining (first order) necessary conditions for control problems governed by partial differential equations with equality and inequality constraints is developed.  相似文献   

7.
This paper is devoted to deal with optimal control problems of semilinear hyperbolic equations with pointwise state constraints and mixed control‐state constraints. We obtain necessary optimality conditions in the form of a Pontryagin's minimum principle. Our approach is based on modern methods of variational analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper first- and second-order optimality conditions for a strong local minimum are presented for optimal control problems with pure state set-inclusion constraints. The first-order condition is of Pontryagin type, while the second-order condition is of the form of an accessory problem associated with the strong local minimality. This latter condition contains an extra term reflecting the presence of the pure state constraints.  相似文献   

9.
In this paper first- and second-order optimality conditions for strong local minimum are presented for optimal control problems with pure state set-inclusion constraints. The first-order condition is of Pontryagin type, while the second-order condition is of the form of an accessory problem associated with the strong local minimality. This latter condition contains an extra term reflecting the presence of the pure state constraints.  相似文献   

10.
Necessary conditions are derived for optimal control problems subject to isoperimetric constraints and for optimal control problems with inequality constraints at the terminal time. The conditions are derived by transforming the problem into the standard form of optimal control problems and then using Pontryagin's principle.  相似文献   

11.
We derive necessary second-order optimality conditions for discontinuous controls in optimal control problems of ordinary differential equations with initial-final state constraints and mixed state-control constraints of equality and inequality type. Under the assumption that the gradients withrespect to the control of active mixed constraints are linearly independent, the necessary conditions follows from a Pontryagin minimum in the problem. Together with sufficient second-order conditions [70], the necessary conditions of the present paper constitute a pair of no-gap conditions.  相似文献   

12.
Laurenz Göllmann  Daniela Kern  Helmut Maurer 《PAMM》2007,7(1):1151701-1151702
We consider retarded optimal control problems with constant delays in state and control variables under mixed controlstate inequality constraints. First order necessary optimality conditions in the form of Pontryagin's minimum principle are presented and discussed as well as numerical methods based upon discretization techniques and nonlinear programming. The minimum principle for the considered problem class leads to a boundary value problem which is retarded in the state dynamics and advanced in the costate dynamics. It can be shown that the Lagrange multipliers associated with the programming problem provide a consistent discretization of the advanced adjoint equation for the delayed control problem. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
This paper deals with optimal control problems described by higher index DAEs. We introduce a class of these problems which can be transformed to index one control problems. For this class of higher index DAEs, we derive first-order approximations and adjoint equations for the functionals defining the problem. These adjoint equations are then used to state, in the accompanying paper, the necessary optimality conditions in the form of a weak maximum principle. The constructive way used to prove these optimality conditions leads to globally convergent algorithms for control problems with state constraints and defined by higher index DAEs.  相似文献   

14.
Necessary conditions are derived for optimal control problems subject to index-2 differential-algebraic equations, pure state constraints, and mixed control-state constraints. Differential-algebraic equations are composite systems of differential equations and algebraic equations, which arise frequently in practical applications. The structure of the optimal control problem under consideration is exploited and special emphasis is laid on the representation of the Lagrange multipliers resulting from the necessary conditions for infinite optimization problems.The author thanks the referees for careful reading and helpful suggestions and comments.  相似文献   

15.
In this work we consider a stochastic optimal control problem with either convex control constraints or finitely many equality and inequality constraints over the final state. Using the variational approach, we are able to obtain first and second order expansions for the state and cost function, around a local minimum. This fact allows us to prove general first order necessary condition and, under a geometrical assumption over the constraint set, second order necessary conditions are also established. We end by giving second order optimality conditions for problems with constraints on expectations of the final state.  相似文献   

16.
The dynamic programming formulation of the forward principle of optimality in the solution of optimal control problems results in a partial differential equation with initial boundary condition whose solution is independent of terminal cost and terminal constraints. Based on this property, two computational algorithms are described. The first-order algorithm with minimum computer storage requirements uses only integration of a system of differential equations with specified initial conditions and numerical minimization in finite-dimensional space. The second-order algorithm is based on the differential dynamic programming approach. Either of the two algorithms may be used for problems with nondifferentiable terminal cost or terminal constraints, and the solution of problems with complicated terminal conditions (e.g., with free terminal time) is greatly simplified.  相似文献   

17.
将经典LQ问题的评价泛函中关于控制变量的二次型推广为一类偶次多项式,证明了这类广义LQ无约束最优控制问题的一个等价扩张逼近可由一列半径递增的球约束最优控制问题加以实现.进而利用P0ntryagin极值原理建立相应的球约束最优控制问题的二次规划,并通过Canonical倒向微分流及不动点定理,求解常微分方程边值问题,得到球约束最优控制问题的最优值.随着约束球半径趋于无穷大,形成原广义LQ最优控制问题的一个极小化序列,从而得到原问题的最优值.  相似文献   

18.
An optimal control problem with an integral quality index specified in a finite time interval is formulated for a model of economic growth that leads to emission of greenhouse gases. The controlled system is linear with respect to control. The problem contains phase constraints that abandon emission of greenhouse gases above some predefined time-dependent limit. As is known, optimal control problems with phase constraints fall beyond the sphere of efficient application of the Pontryagin maximum principle because, for such problems, this principle is formulated in a complicated form difficult for analytic treatment in particular situations. In this study, the analytic structure of the optimal control and phase trajectories is constructed using the double variation method.  相似文献   

19.
We study optimal control problems for semilinear elliptic equations subject to control and state inequality constraints. In a first part we consider boundary control problems with either Dirichlet or Neumann conditions. By introducing suitable discretization schemes, the control problem is transcribed into a nonlinear programming problem. It is shown that a recently developed interior point method is able to solve these problems even for high discretizations. Several numerical examples with Dirichlet and Neumann boundary conditions are provided that illustrate the performance of the algorithm for different types of controls including bang-bang and singular controls. The necessary conditions of optimality are checked numerically in the presence of active control and state constraints.  相似文献   

20.

For optimal control problems subject to index-one differential-algebraic equations in semi-explicit form we discuss second order sufficient conditions in form of a coercivity condition taking into account the two-norm discrepancy. Furthermore we introduce a related Riccati-type and Legendre-Clebsch condition which are sufficient for the validity of the coercivity condition. Using the implicit Euler-discretization we approximate the optimal control problem and analyze the convergence of solutions of the local minimum principle for the discretized optimal control problem by applying the general convergence framework of Stetter, which requires the discretization method to be continuous, consistent, and stable.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号