首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In this study, the thermochemical state during turbulent flame-wall interaction of a stoichiometric methane-air flame is investigated using a fully resolved simulation with detailed chemistry. The turbulent side-wall quenching flame shows both head-on quenching and side-wall quenching-like behavior that significantly affects the CO formation in the near-wall region. The detailed insights from the simulation are used to evaluate a recently proposed flame (tip) vortex interaction mechanism identified from experiments on turbulent side-wall quenching. It describes the entrainment of burnt gases into the fresh gas mixture near the flame’s quenching point. The flame behavior and thermochemical states observed in the simulation are similar to the phenomena observed in the experiments. A novel chemistry manifold is presented that accounts for both the effects of flame dilution due to exhaust gas recirculation in the flame vortex interaction area and enthalpy losses to the wall. The manifold is validated in an a-priori analysis using the simulation results as a reference. The incorporation of exhaust gas recirculation effects in the manifold leads to a significantly increased prediction accuracy in the near-wall regions of flame-vortex interactions.  相似文献   

2.
Velocities and flame front locations are measured simultaneously in a turbulent, side-wall quenching (SWQ) V-shaped flame during flame-wall interaction (FWI) at 1 and 3 bar by means of particle image velocimetry (PIV) and planar laser-induced fluorescence of the OH radical (OH-PLIF). The turbulent flame brush is characterized based on the spatial distribution of the mean reaction progress variable and a common direct method is used to derive the flame surface density (FSD) from the two-dimensional data by image processing. As the near-wall reaction zone is limited to a smaller region closer to the wall at higher pressure, higher peak values are observed in the FSD at 3 bar. A second definition of the FSD adapted for flames exposed to quenching is utilized similar to previous studies emphasizing the impact of FWI. The influence of the wall on the flame front topology is investigated based on a flame front-conditioned FSD and its variability within the data set. In a last step, an estimate of the mean reaction rate is deduced using an FSD model and evaluated in terms of integral and space-averaged values. A decreasing trend of integral mean reaction rate in regions with increasing flame quenching is observed for both operating conditions, but more pronounced at 3 bar. Space-averaged mean reaction rates, however, increase in the quenching region, as the size of the reaction zone decreases.  相似文献   

3.
A combined experimental and numerical investigation of partially premixed laminar methane-air flames undergoing side-wall quenching (SWQ) is performed. A well-established SWQ burner is adapted to allow the seeding of the main flow with additional gaseous products issued from a (secondary) wall inlet close to the flame’s quenching point. First, the characteristics of the partially premixed flame that quenches at the wall are assessed using planar laser-induced fluorescence measurements of the OH radical, and a corresponding numerical simulation with fully-resolved transport and chemistry is conducted. A boundary layer of enriched mixture is formed at the wall, leading to a reaction zone parallel to the wall for high injection rates from the wall inlet. Subsequently, in a numerical study, the wall inflow is mixed with dimethylmethylphosphonat (DMMP), a phosphor-based flame retardant. The DMMP addition allows the assessment of the combined effects of heat loss and flame retardants on the flame structure during flame-wall interaction. With an increasing amount of DMMP in the injected mixture, the flame stabilizes further away from the wall and shows a decrease in the local heat-release rate. Thereby, the maximum wall heat flux is significantly reduced. That results in a lower thermal load on the quenching wall. The flame structure analysis shows an accumulation of the intermediate species HOPO at the wall similar to the CO accumulation during the quenching of premixed flames without flame retardant addition. The study shows how the structure of a partially premixed flame is influenced by a wall that releases either additional fuel or a mixture of fuel and flame retardant. The insights gained from the canonical configuration can lead to a better understanding of the combined effects of flame retardants and heat losses in near-wall flames.  相似文献   

4.
In the present work, three-dimensional turbulent non-premixed oblique slot-jet flames impinging at a wall were investigated using direct numerical simulation (DNS). Two cases are considered with the Damköhler number (Da) of case A being twice that of case B. A 17 species and 73-step mechanism for methane combustion was employed in the simulations. It was found that flame extinction in case B is more prominent compared to case A. Reignition in the lower branch of combustion for case A occurs when the scalar dissipation rate relaxes, while no reignition occurs in the lower branch for case B due to excessive scalar dissipation rate. A method was proposed to identify the flame quenching edges of turbulent non-premixed flames in wall-bounded flows based on the intersections of mixture fraction and OH mass fraction iso-surfaces. The flame/wall interactions were examined in terms of the quenching distance and the wall heat flux along the quenching edges. There is essentially no flame/wall interaction in case B due to the extinction caused by excessive turbulent mixing. In contrast, significant interactions between flames and the wall are observed in case A. The quenching distance is found to be negatively correlated with wall heat flux as previously reported in turbulent premixed flames. The influence of chemical reactions and wall on flow topologies was identified. The FS/U and FC/U topologies are found near flame edges, and the NNN/U topology appears when reignition occurs. The vortex-dominant topologies, FC/U and FS/S, play an increasingly important role as the jet turbulence develops.  相似文献   

5.
Highly-resolved numerical simulations employing detailed reaction kinetics and molecular transport have been applied to flame-wall interaction (FWI) of laminar premixed flames. A multiple plane-jet flame (2D) has been considered, which is operated with premixed methane/air mixtures at atmospheric conditions and with different equivalence ratios. Free flame (FF) and side-wall quenching (SWQ) conditions have been accomplished by defining one lateral boundary as either a symmetry plane for FF or a cold wall with fixed temperature for SWQ. An equidistant grid with a resolution of 20 µm is used to resolve the FWI zone. The GRI-3.0 mechanism is used for computing chemical reaction rates. The flame is tangentially compressed when approaching the cold wall, and elongated in the FF case, causing an inversion of the sign of the tangential strain rate Kas and a considerable decrease of the total stretch rate Katot for the SWQ flame. The flame consumption speed SL decreases with decreasing normal stretch due to curvature Kac while approaching the cold wall, but it increases with decreasing Kac for the FF case, leading to an inversion of the Markstein number Matot based on Katot from positive in FF to negative in the SWQ case. The results reveal a strong correlation of flame dynamics during transitions from FWI to freely propagating flames, which may bring a new perspective for modeling FWI phenomena by means of flame dynamics. To do this, the quenching effect of the wall may be reproduced by an inversion of the Markstein number from positive to negative in the FWI zone and applying the general linear Markstein correlation, leading to a decrease of the flame consumption speed. In addition, the quenching distance evaluated from SL has been found to be almost equal to the unstretched laminar flame thickness, which compares quantitatively well with measured data from literature.  相似文献   

6.
Flame–wall interaction (FWI) in premixed turbulent combustion has been analysed based on a counter-flow like configuration at the statistically stationary state. For the present configuration, the two FWI sub-zones, i.e the influence zone and the quenching zone, can be identified from the DNS results. Detailed analysis of the important quantities, such as the flame temperature, flame–wall distance, wall heat flux, flame curvature and dilatation (including the flame normal and tangential strain rates), and some orientation relations between the flame normal and the principal strain rate directions, have been reported, together with the physical explanations. All these statistical results are determined by the relative strengths of the wall heat flux, thermal expansion and the flame–turbulence interaction.  相似文献   

7.
Different approaches to the modelling of turbulent combustion first are reviewed briefly. A unified, stretched flamelet approach then is presented. With Reynolds stress modelling and a generalized probability density function (PDF) of strain rate, it enables a source term, in the form of a probability of burning function, Pb, to be expressed as a function of Markstein numbers and the Karlovitz stretch factor. When Pb is combined with some turbulent flame fractal considerations, an expression is obtained for the turbulent burning velocity. When it is combined with the profile of the unstretched laminar flame volumetric heat release rate plotted against the reaction progress variable and the PDF of the latter, an expression is obtained for the mean volumetric turbulent heat release rate. Through these relationships experimental values of turbulent burning velocity might be used to evaluate Pb and hence the CFD source term, the mean volumetric heat release rate.

Different theoretical expressions for the turbulent burning velocity, including the present one, are compared with experimental measurements. The differences between these are discussed and this is followed by a review of CFD applications of these flamelet concepts to premixed and non-premixed combustion. The various assumptions made in the course of the analyses are scrutinized in the light of recent direct numerical simulations of turbulent flames and the applications to the flames of laser diagnostics. Remaining problem areas include a sufficiently general combination of strain rate and flame curvature PDFs to give a single PDF of flame stretch rate, the nature of flame quenching under positive and negative stretch rates, flame responses to changing stretch rates and the effects of flame instabilities.  相似文献   

8.
We present experimental results from turbulent low-swirl lean H2/CH4 flames impinging on an inclined, cooled iso-thermal wall, based on simultaneous stereo-PIV and OH×CH2O PLIF measurements. By increasing the H2 fraction in the fuel while keeping Karlovitz number (Ka) fixed in a first series of flames, a fuel dependent near-wall flame structure is identified. Although Ka is constant, flames with high H2 fraction exhibit significantly more broken reaction zones. In addition, these high H2 fraction flames interact significantly more with the wall, stabilizing through the inner shear layer and well inside the near-wall swirling flow due to a higher resistance to mean strain rate. This flame-wall interaction is argued to increase the effective local Ka due to heat loss to the wall, as similar flames with a (near adiabatic) ceramic wall instead of a cooled wall exhibit significantly less flame brokenness. A second series of leaner flames were investigated near blow-off limit and showed complete quenching in the inner shear layer, where the mean strain rate matches the extinction strain rate extracted from 1D flames. For pure CH4 flames (Ka ≈ 30), the reaction zone remains thin up to the quenching point, while conversely for the 70% H2 flames (Ka ≈ 1100), the reaction zone is highly fragmented. Remarkably, in all near blow-off cases with CH4 in the fuel, a large cloud of CH2O persists downstream the quenching point, suggesting incomplete combustion. Finally, ultra lean pure hydrogen flames were also studied for equivalence ratios as low as 0.22, and through OH imaging, exhibit a clear transition from a cellular flame structure to a highly fragmented flame structure near blow-off.  相似文献   

9.
Local scalar front structures of OH mole fraction, reaction progress variable, and its three-dimensional gradient have been measured in stagnation-type turbulent premixed flames. The reaction progress variable front is observed to change with increasing turbulence from parallel iso-scalar contours but reduced progress variable gradients, called the lamella-like front, to disrupted non-parallel iso-contours that deviate substantially from those of wrinkled laminar flamelets, called the non-flamelet front. This transition is attributed to the different scales of interaction between the flame internal structure and a spectrum of turbulence extending from the integral scale to the Kolmogorov scale. The lamella-like front pattern occurs when the length scales of interaction are smaller than the laminar flame thickness but the time scales are greater than the flame residence time. The non-flamelet front pattern occurs when the length scales of interaction are greater than the laminar flame thickness but the time scales are smaller than the flame residence time. This difference corresponds to the change of combustion regime from complex-strain flame front to turbulent flame front on a revised regime diagram. A correlation is also proposed for the turbulent flame brush thickness as a function of turbulent Reynolds number and heat release parameter. The heat release parameter is considered to arise from the non-passive effects of flame-surface wrinkling.  相似文献   

10.
The propagation of premixed laminar flame in ducts of circular cross-section considering a thermal-diffusive model is investigated numerically. Heat losses by conduction to the channels walls are taken into account using the thermally thin wall regime. The effects and the relationship between thickness and diameter of the tube with the flame speed propagation are studied and the quenching condition is obtained as a function of the heat-loss parameter. The mathematical model employs the axisymmetric energy and species equations. The calculations are based on a two-step chemistry, with an Arrhenius, energetically neutral, radical production reaction followed by an exothermic radical recombination reaction. For large values of the heat-loss parameter, the wall temperature is close to the free stream temperature and all the heat losses through the wall are convected away. No heat feedback occurs. On the other hand, for small values of the heat-loss parameter, a feedback mechanism occurs by transferring heat from the burned gas to the fresh mixture along the tube wall. For values of the heat-loss parameter of order unity, the heat feedback mechanism is able to sustain the flame propagation and the quenching condition disappears, producing an almost planar flame front as the propagation velocity reduces. For this two-step reaction mechanism, the radical species behaviour at the duct walls seems to have negligible effect on the quenching process.  相似文献   

11.
The statistical behaviour and the modelling of turbulent scalar flux transport have been analysed using a direct numerical simulation (DNS) database of head-on quenching of statistically planar turbulent premixed flames by an isothermal wall. A range of different values of Damköhler, Karlovitz numbers and Lewis numbers has been considered for this analysis. The magnitudes of the turbulent transport and mean velocity gradient terms in the turbulent scalar flux transport equation remain small in comparison to the pressure gradient, molecular dissipation and reaction-velocity fluctuation correlation terms in the turbulent scalar flux transport equation when the flame is away from the wall but the magnitudes of all these terms diminish and assume comparable values during flame quenching before vanishing altogether. It has been found that the existing models for the turbulent transport, pressure gradient, molecular dissipation and reaction-velocity fluctuation correlation terms in the turbulent scalar flux transport equation do not adequately address the respective behaviours extracted from DNS data in the near-wall region during flame quenching. Existing models for transport equation-based closures of turbulent scalar flux have been modified in such a manner that these models provide satisfactory prediction both near to and away from the wall.  相似文献   

12.
Recent numerical and experimental studies have unveiled a potentially marked difference between the laminar as well as turbulent propagation of premixed flames exhibiting Darrieus–Landau (DL) (or hydrodynamic) instabilities from flames for which instabilities are inhibited. In this study we utilize two-dimensional numerical simulations of slot burner flames as well as experimental Propane–Air Bunsen flames to analyse differences in turbulent propagation, strain rate and induced flow patterns of hydrodynamically stable and unstable flames. We also investigate the effects of hydrodynamic instability on quantities which are directly related to reaction rate closure models, such as flame surface density and stretch factor. A clear enhancement of turbulent flame speed can be observed for unstable flames, generally mitigated at higher turbulence intensity, which is attributed to a flame area increase induced by the characteristic cusp-like DL-induced corrugation, absent in stable flames, which occurs concurrently and in synergy with turbulent wrinkling. Unstable flames also exhibit, both numerically and experimentally, a different correlation between strain rate and flame curvature and are observed to give rise to a channeling of the induced flow in the fresh mixture. Conditionally averaged flame surface density is also observed to attain smaller values in unstable flames, as a result of the thicker turbulent flame brush, indicating that closure models should incorporate instability-related parameters in addition to turbulence-related parameters.  相似文献   

13.
The premixed stagnation flame stabilised by a wall is analysed theoretically considering thermally sensitive intermediate kinetics. We consider the limit case of infinitely large activation energy of the chain-branching reaction, in which the radical is produced infinitely fast once the cross-over temperature is reached. Under the assumptions of potential flow field and constant density, the correlation for flame position and stretch rate of the premixed stagnation flame is derived. Based on this correlation, the effects of heat conduction and radical quenching on the wall surface are examined. The wall temperature is shown to have great impact on flame bifurcation and extinction, especially when the flame is close to the wall. Different flame structures are observed for near-wall normal flame, weak flame, and critically quenched flame. The fuel and radical Lewis numbers are found to have opposite effects on the extinction stretch rate. Moreover, it is also demonstrated that only when the flame is close to the wall does the radical quenching strongly influence the flame bifurcation and extinction. The extinction stretch rate is shown to decrease with the amount of radical quenching for different fuel and radical Lewis numbers. Besides, the coupling between the wall heat conduction and radical quenching is found to greatly influence the bifurcation and extinction of the premixed stagnation flame.  相似文献   

14.
When operating under lean fuel–air conditions, flame flashback is an operational safety issue in stationary gas turbines. In particular, with the increased use of hydrogen, the propagation of the flame through the boundary layers into the mixing section becomes feasible. Typically, these mixing regions are not designed to hold a high-temperature flame and can lead to catastrophic failure of the gas turbine. Flame flashback along the boundary layers is a competition between chemical reactions in a turbulent flow, where fuel and air are incompletely mixed, and heat loss to the wall that promotes flame quenching. The focus of this work is to develop a comprehensive simulation approach to model boundary layer flashback, accounting for fuel–air stratification and wall heat loss. A large eddy simulation (LES) based framework is used, along with a tabulation-based combustion model. Different approaches to tabulation and the effect of wall heat loss are studied. An experimental flashback configuration is used to understand the predictive accuracy of the models. It is shown that diffusion-flame-based tabulation methods are better suited due to the flashback occurring in relatively low-strain and lean fuel–air mixtures. Further, the flashback is promoted by the formation of features such as flame tongues, which induce negative velocity separated boundary layer flow that promotes upstream flame motion. The wall heat loss alters the strength of these separated flows, which in turn affects the flashback propensity. Comparisons with experimental data for both non-reacting cases that quantify fuel–air mixing and reacting flashback cases are used to demonstrate predictive accuracy.  相似文献   

15.
Experimental data is presented for the interaction between a propagating flame and a simple vortex flow field structure generated in the wake of solid obstacles. The interaction between gas movement and obstacles creates vortex shedding forming a simple flow field recirculation. The presence of the simple turbulent structure within the gas mixture curls the flame front increasing curvature and enhancing burning rate. A novel twin camera Particle Image Velocimetry, PIV, was employed to characterise the flow field recirculation and the interaction with the flame front. The technique allowed the quantification of the flame/vortex interaction. The twin camera technique provides data to define the spatial variation of both the velocity of the flow field and flame front. Experimentally obtained values of local flame displacement speed and flame stretch rate are presented for simple flame/vortex interactions.  相似文献   

16.
Tabulated chemistry and presumed probability density function (PDF) approaches are combined to perform RANS modeling of premixed turbulent combustion. The chemistry is tabulated from premixed flamelets with three independent parameters: the equivalence ratio of the mixture, the progress of reaction, and the specific enthalpy, to account for heat losses at walls. Mean quantities are estimated from presumed PDFs. This approach is used to numerically predict a turbulent premixed flame diluted by hot burnt products at an equivalence ratio that differs from the main stream of reactants. The investigated flame, subjected to high velocity fluctuations, has a thickened-wrinkled structure. A recently proposed closure for scalar dissipation rate that includes an estimation of the coupling between flame wrinkling and micromixing is retained. Comparisons of simulations with experimental measurements of mean velocity, temperature, and reactants are performed.  相似文献   

17.
18.
Turbulent flames with compositionally inhomogeneous mixtures are common in many combustion systems. Turbulent jet flames with a circular nozzle burner were used earlier to study the impact of inhomogeneous mixtures, and these studies showed that the nozzle radius affects the flame stability. Accordingly, planar turbulent flames with inhomogeneous turbulent jet are created in a concentric flow slot burner (CFSB) to avoid this effect in the present study. The stability characteristics, the mixing field structure, and the flame front structure were measured, and the correlations between stability and the mixing field structure were investigated. The mixture fraction field was measured in non-reacting jets at the nozzle exit using highly resolved Rayleigh scattering technique, and the flame front was measured in some selected turbulent flames using high-speed Planar Laser-Induced Fluorescence (PLIF) of OH technique. The data show strong correlations between flame stability and the range of mixture fraction fluctuations. The flames are highly stabilized within a mixing field environment with the range of fluctuation in mixture fraction close to the range of the flammability limits. The mixing field structure is also illustrated and discussed using a mixing regime diagram and showed that the scatter of the data of the different cases is consistent with the classified mixing regimes. Lean flames are stabilized in the current slot burner. The flame front structure topology varies consistently from thin, small curvature at the low level of turbulence and higher equivalence ratio to more wrinkled, larger curvature, but a thicker structure at a higher level of turbulence and lower equivalence ratio.  相似文献   

19.
Interaction of a premixed flame with a liquid fuel film on a wall   总被引:1,自引:0,他引:1  
In piston engines and in gas turbines, the injection of liquid fuel often leads to the formation of a liquid film on the combustor wall. If a flame reaches this zone, undesired phenomena such as coking may occur and diminish the lifetime of the engine. Moreover, the effect of such an interaction on maximum wall heat fluxes, flame quenching, and pollutant formation is largely unknown. This paper presents a numerical study of the interaction of a premixed flame with a cold wall covered with a film of liquid fuel. Simulations show that the presence of the film leads to a very rich zone at the wall in which the flame cannot propagate. As a result, the flame wall distance remains larger with liquid fuel than it is for a dry wall, and maximum heat fluxes are smaller. The nature of the interaction of flame wall interaction with a liquid fuel is also different from the classical flame/dry wall interaction: it is controlled mainly by chemical mechanisms and not by the thermal quenching effect observed for flames interacting with dry walls: the existence of a very rich zone created above the liquid film is the main mechanism controlling quenching.  相似文献   

20.
基于波传播算法的火焰不稳定性   总被引:3,自引:0,他引:3  
基于波传播算法构造了多组分反应流的数值格式,利用CH4空气基元反应动力学模型,并采用分离算法,对CH4空气混合物中,入射激波与火焰的相互作用,以及反射激波与火焰的二次作用过程进行了数值模拟.根据计算结果,讨论了激波诱导火焰失稳的发展过程及其特点.结果表明,Helmholtz不稳定、RichtmyerMeshkov不稳定以及反应放热速率对火焰失稳过程有重要影响.计算结果与实验结果进行了比较,对数值方法的有效性进行了验证.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号