首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the aim of an improved understanding of the metal-complexation properties of alicyclic β-amino acid stereoisomers, and their peptides, the complex equilibria and modes of coordination with copper(II) of L-phenylalanine (F) derivatives of cis/trans-2-aminocyclohexanecarboxylic acid (c/tACHC), i.e. the dipeptides F-c/tACHC and c/tACHC-F, were investigated by a combination of CW and pulsed EPR methods. For the interpretation of the experimental data, DFT quantum-chemical calculations were carried out. Simulation of a pH-dependent series of room-temperature CW-EPR spectra revealed the presence of EPR-active complexes ([Cu(aqua)](2+), [CuL](+), [CuLH(-1)], [CuLH(-2)](-), and [CuL(2)H(-1)](-)), and an EPR-inactive species ([Cu(2)L(2)H(-3)](-)) in aqueous solutions for all studied cases. [CuLH](2+) was included in the equilibrium model for the c/tACHC-F-copper(II) systems, and [CuL(2)], together with two coordination isomers of [CuL(2)H(-1)](-), were also identified in the F-tACHC-copper(II) system. Comparison of the complexation properties of the diastereomeric ligand pair F-(1S,2R)-ACHC and F-(1R,2S)-ACHC did not reveal significant differences. Considerably lower formation constants were obtained for the trans than for the cis isomers for both the F-c/tACHC and the c/tACHC-F pairs in the case of [CuLH(-1)] involving tridentate coordination by the amino, the deprotonated peptide, and the carboxylate groups. A detailed structural analysis by pulsed EPR methods and DFT calculations indicated that there was no significant destabilization for the complexes of the trans isomers. The lower stability of their complexes was explained by the limitation that only the conformer with donor groups in equatorial-equatorial ring positions can bind to copper(II), whereas both equatorial-axial conformers of the cis isomers are capable of binding. From a consideration of the proton couplings obtained with X-band (1)H HYSCORE, (2)H exchange experiments, and DFT, the thermodynamically most stable cyclohexane ring conformer was assigned for all four [CuLH(-1)] complexes. For the F-cACHC case, the conformer did not match the most stable conformer of the free ligand.  相似文献   

2.
Twelve ESR-active (and one inactive) copper(II) complexes of L-histidylglycine (HL) were characterized via their formation (micro)constants and ESR parameters obtained by two-dimensional ESR spectroscopic evaluation in aqueous solution. In strongly acidic media, the ligand is coordinated through its N-terminal donor groups: the complex [CuLH(2)](3+) involves monodentate imidazole binding, whereas [CuLH](2+) involves bidentate ligation through the amino and imidazole N atoms. This histamine-like bonding mode also predominates in the isomers of [CuL(2)], formed at ligand excess near pH 7: in the major 4N isomer, both ligands occupy two equatorial sites, while in the 3N isomer, the second dipeptide is coordinated equatorially by the amino and axially by the imidazole groups. At above pH 3-4, deprotonation of the peptide group also starts: in approximately 60% of the molecules of [CuL](+), the peptide group is deprotonated, while in the minor isomer histamine-like coordination occurs. At higher pH, the active dimer [Cu(2)L(2)H(-2)], the mixed hydroxo complexes (the inactive [Cu(2)L(2)H(-3)](-) and the active [CuLH(-2)](-)), and the bis complexes [CuL(2)H](+) and [CuL(2)H(-1)](-) all involve tridentate equatorial ligation of the backbone by the amino and deprotonated peptide N and the carboxylate O atoms. In the active dimer, the neutral imidazole groups form bridges between CuLH(-1) units. In [CuL(2)H](+), the second ligand is bound equatorially via its imidazole group; in [CuL(2)H(-1)](-), the L ligand occupies the fourth equatorial site and an axial site through its amino and imidazole N atoms, respectively.  相似文献   

3.
We have studied the complex equilibria of copper(II) with a series of beta-substituted beta-amino acids (R: H, Me, Et, iBu, iPr, cHex, 1-EtPr, and tBu) in aqueous solution by pH potentiometry and electron paramagnetic resonace (EPR) spectroscopy in the range pH = 2-8 at various metal and ligand concentrations. The basicities of the corresponding donor groups differed only slightly in the series of ligands. A purely mathematical method, the matrix rank analysis carried out on the EPR spectrum package recorded in the presence of copper(II), indicated the formation of 6 independent paramagnetic species. Accordingly, Cu(2+) (aqua complex) and the complexes [CuLH](2+), [CuL](+), [CuL(2)H(2)](2+), [CuL(2)H](+), and [CuL(2)] were considered in the subsequent analysis of series of spectra, and also two isomers of [CuL(2)] were identified. The formation constants and the EPR parameters, e.g. the isotropic g-factors and the copper and nitrogen hyperfine couplings for the above species, were determined in the same optimization procedure by the simultaneous evaluation of spectra. The ligands "LH" are suggested to bind in equatorial positions through their carboxylate groups, while the amino acids in the L protonation state are likely to occupy two equatorial sites via the amino and carboxylate groups. For the isomers of [CuL(2)], the donors of the same kind are in the cis or trans position. As far as we know, this is the first reported case in which a strong correlation has been found between the steric effects of substituents characterized by Meyer's steric parameter V(a) and the protonation constants of metal complexes. The observed trend for the preference for nonprotonated complexes [CuL](+) and [CuL(2)] to increase with the steric demand of the substituent was explained by the increasing shielding effect of the substituent hindering protonation of the nonprotonated complex.  相似文献   

4.
The equilibria of copper(II) with (S)-glutamic-gamma-hydroxamic acid (H2L) were investigated in aqueous solution by different techniques: glass electrode potentiometry; calorimetry; VIS and CD spectrophotometry; and ES-MS. An unexpected pentacopper(II) 12-metallacrown-4 [Cu5L4H(-4)](2-) was detected, analogous to those well known formed by alpha- and beta-aminohydroxamic acids, but of lower stability. Another five species were found: [CuLH]+; [CuL2H2]; [Cu2L2]; [CuL2H]-; and [CuL2]2-. Their structures are proposed based on both spectroscopic and calorimetric data.  相似文献   

5.
New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a Cu ion from the other unit. The magnetic properties of the gadolinium-containing complexes have been determined. Ferromagnetic exchange interactions within the trinuclear [Cu(2)Gd] motifs occur. In the compounds 4 and 7, the [Ni(mnt)(2)](*-) radical anions contribution to the magnetization is clearly observed in the high-temperature regime, and most of it vanishes upon temperature decrease, very likely because of the rather strong antiferromagnetic exchange interactions between the open-shell species. The extent of the exchange interaction in the compound 7, which was found to be antiferromagnetic, between the coordinated Cu center and the corresponding [Ni(mnt)(2)](*-) radical anion, bearing mostly a 3p spin type, was estimated through CASSCF/CASPT2 calculations. Compound 6 exhibits a slow relaxation of the magnetization.  相似文献   

6.
The new phenol-imidazole pro-ligands (R)LH react with Co(BF(4))(2).6H(2)O in the presence of Et(3)N to form the corresponding [Co(II)((R)L)(2)] compound (R = Ph (1), PhOMe (2), or Bz (3)). Also, (Bz)LH, reacts with Co(ii) in the presence of Et(3)N and H(2)O(2) to form [Co(III)((Bz)L)(3)](4). The structures of 1.2.5MeCN, 2.2DMF, 3.4MeOH, and 4.4DMF have been determined by X-ray crystallography. 1, 2, and 3 each involve Co(II) bound to two N,O-bidentate ligands with a distorted tetrahedral coordination sphere; 4 involves Co(III) bound to three N,O-bidentate ligands in a mer-N(3)O(3) distorted octahedral geometry. [Co(II)((R)L)(2)](R = Ph or PhOMe) undergo two, one-electron, oxidations. The products of the first oxidation, [1](+) and [2](+), have been synthesised by the chemical oxidation of 1 and 2, respectively; these cations, formulated as [Co(II)((R)L*)((R)L)(2)](+), comprise one phenoxyl radical and one phenolate ligand bound to Co(II) and are the first phenoxyl radical ligand complexes of tetra-coordinated Co(II). 4 undergoes two, one-electron, ligand-based oxidations, the first of which produces [4](+), [Co(III)((Bz)L*)((Bz)L)(2)](+). Unlike [1](+) and [2](+), product of the one-electron oxidation of [Co(II)((Bz)L)(2)], [3](+), is unstable and decomposes to produce [4](+). These studies have demonstrated that the chemical properties of [M(II)((R)L*)((R)L)(2)](+)(M = Co, Cu, Zn) are highly dependent on the nature of both the ligand and the metal centre.  相似文献   

7.
Twelve complexes 1-12 of general category [M(ligand)(anion)(x)(water)(y)], where ligand = N,N,N',N'-tetrakis(2-hydroxypropyl/ethyl)ethylenediamine (HPEN/HEEN), anion = anions of picric acid (PIC), 3,5-dinitrobenzoic acid (DNB), 2,4-dinitrophenol (DNP), and o-nitrobenzoic acid (ONB), M = Ca(2+), Sr(2+), Ba(2+), or Na(+), x = 1 and 2, and y = 0-4, were synthesized. All of these complexes were characterized by elemental analysis, IR, (1)H and (13)C NMR, and thermal studies. X-ray crystal studies of these complexes 1-12, [Ca(HPEN)(H(2)O)(2)](PIC)(2).H(2)O (1), [Ca(HEEN)(PIC)](PIC) (2), Ba(HPEN)(PIC)(2) (3), [Na(HPEN)(PIC)](2) (4), Ca(HPEN)(H(2)O)(2)](DNB)(2).H(2)O (5),Ca(HEEN)(H(2)O)](DNB)(2).H(2)O (6), [Sr(HPEN)(H(2)O)(3)](DNB)(2) (7), [Ba(HPEN)(H(2)O)(2)](DNB)(2).H(2)O](2) (8), [[Ba(HEEN)(H(2)O)(2)](ONB)(2)](2) (9), [[Sr(HPEN)(H(2)O)(2)](DNP)(2)](2) (10), [[Ba(HPEN)(H(2)O)(2)](DNP)(2)](2) (11), and [Ca(HEEN)(DNP)](DNP) (H(2)O) (12), have been carried out at room temperature. Factors which influence the stability and the type of complex formed have been recognized as H-bonding interactions, presence/absence of solvent, nature of the anion, and nature of the cation. Both the ligands coordinate the metal ion through all the six available donor atoms. The complexes 1 and 5-11 have water molecules in the coordination sphere, and their crystal structures show that water is playing a dual character. It coordinates to the metal ion on one hand and strongly hydrogen bonds to the anion on the other. These strong hydrogen bonds stabilize the anion and decrease the cation-anion interactions by many times to an extent that the anions are completely excluded out of the coordination sphere and produce totally charge-separated complexes. In the absence of water molecules as in 2 and 3 the number of hydrogen bonds is reduced considerably. In both the complexes the anions case interact more strongly with the metal ion to give rise to a partially charge-separated 2 or tightly ion-paired 3 complex. High charge density Ca(2+) forms only monomeric complexes. It has more affinity toward stronger nucleophiles such as DNP and PIC with which it gives partially charge-separated eight-coordinated complexes. But with relatively weaker nucleophile like DNB, water replaces the anion and produces a seven coordinated totally charge-separated complex. Sr(2+) with lesser charge/radius ratio forms only charge-separated monomeric as well as dimeric complexes. Higher coordination number of Sr(2+) is achieved with coordinated water molecules which may be bridging or nonbridging in nature. All charge-separated complexes of the largest Ba(2+) are dimeric with bridging water molecules. Only one monomeric ion-paired complex was obtained with Ba(PIC)(2). Na(+) forms a unique dinuclear cryptand-like complex with HPEN behaving as a heptadentate chelating-cum-bridging ligand.  相似文献   

8.
Air-stable rhenium(V) oxo complexes are formed when [ReOCl(3)(PPh(3))(2)] is treated with N-heterocyclic carbenes of the 1,3-dialkyl-4,5-dimethylimidazol-2-ylidene type, L(R) (R = Me, Et, i-Pr). Complexes of the compositions [ReO(2)(L(R))(4)](+), [ReOCl(L(R))(4)](2+), or [ReO(OMe)(L(R))(4)](2+) can be isolated depending on the alkyl substituents at the nitrogen atoms of the ligands and the reaction conditions applied. Despite the steric overcrowding of the equatorial coordination spheres of the metal atoms by each of the four carbene ligands, stable complexes with six-coordinate rhenium atoms are obtained. Steric demands of the alkyl groups allow control of the stability of the mono-oxo intermediates. Air-stable cationic complexes of the compositions [ReOCl(L(Me))(4)](2+), [ReOCl(L(Et))(4)](2+), and [ReO(OMe)(L(Me))(4)](2+) have been isolated, whereas reactions of [ReOCl(3)(PPh(3))(2)] or other rhenium(V) precursors with the more bulky 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (L(i)(-)(Pr)) directly yield the dioxo complex [ReO(2)(L(i)(-)(Pr))(4)](+). X-ray structures of [ReO(2)(L(i)(-)(Pr))(4)][ReO(4)], [ReO(2)(L(i)(-)(Pr))(4)][PF(6)], [ReO(2)(L(Me))(4)][ReO(4)](0.45)[PF(6)](0.55), [ReO(MeOH)(L(Me))(4)][PF(6)](2), and [ReOCl(L(Et))(4)][PF(6)](2) show that the equatorial coordination spheres of the rhenium atoms are essentially planar irrespective of the steric demands of the individual carbene ligands.  相似文献   

9.
A nanosized octadecaheteronuclear aggregate, [[NiL(2)](12)[Nb(CN)(8)](6)(H(2)O)(6)], and a 1-D coordination polymer, [[MnL(1)](2)[Nb(CN)(8)](H(2)O)]( infinity ), have been obtained by self-assembly between the octacyanometalate [Nb(CN)(8)](4)(-) and [ML](2+) complexes. The dimensionality of the supramolecular architectures was found to be controlled by the [ML] module for which the equatorial coordination sites are blocked by a macrocyclic ligand. The crystal structures and magnetic properties for both the compounds are described.  相似文献   

10.
The equilibrium distribution of species formed between Cu(II) and N-acetylneuraminic (sialic) acid (I, LH) at 298 K has been determined using a two-dimensional (2D) simulation analysis of electron paramagnetic resonance (EPR) spectra. In acidic solutions (pH values < 4), the major species present are Cu(2+), [CuL]+ [logbeta = 1.64(4)], and [CuL2] [logbeta = 2.77(5)]. At intermediate pH values (4.0 < pH < 7.5), [CuL2H-1]- [logbeta = -2.72(7)] and two isomers of [CuLH-1] [logbeta (overall) = -3.37(2)] are present. At alkaline pH values (7.5 < pH < 11), the major species present is [CuL2H-2]2-, modeled as three isomers with unique giso and Aiso values [logbeta (overall) = -8.68(3)]. Two further species ([CuLH-3]2- and [CuL2H-3]3-) appear at pH values > 11. It is proposed that [CuL]+ most likely features I coordinated via the deprotonated carboxylic acid group (O1) and the endocyclic oxygen atom (OR) forming a five-membered chelate ring. Select Cu(II)-I species of the form [CuLH-1] may feature I acting as a dianionic tridentate chelate, via oxygen atoms derived from O1, OR, and one deprotonated hydroxy group (O7 or O8) from the glycerol tail. Alternatively, I may coordinate Cu(II) in a bidentate fashion as the tert-2-hydroxycarboxylato (O1,O2) dianion. Spectra predicted for Cu(II)-I complexes in which I is coordinated in either a O1,OR {I1-} or O1,O2 {I2-} bidentate fashion {e.g., [CuL]+ (O1,O R), [CuL2] (bis-O1,O R), [CuLH-1] (isomer: O1, O2), [CuL2H-1]- (O1, O R; O1, O2), and [CuL2H-2]2- (isomer: bis-O1, O2)} have "irregular" EPR spectra that are ascribed to the existence of Cu(II)-I(monomer) <==> Cu(II)-I(polymer) equilibria. The formation of polymeric Cu(II)-I species will be favored in these complexes because the glycerol-derived hydroxyl groups at the complex periphery (O, 7O, 8O9) are available for further Cu(II) binding. The presence of polymeric Cu(II)-I species is supported by EPR spectral data from solutions of Cu(II) and the homopolymer of I, colominic acid (Ipoly). Conversely, spectra predicted for Cu(II)-I complexes where I is coordinated in a {I2-} tridentate {e.g., [CuLH-1] (isomer: O1, O R, O7, or O8) and [CuL2H-2]2- (isomer: bis-O1,O R,O7, or O8)} or tetradentate fashion {I3-} {e.g., [CuLH-3]2- (O1, O R, O, 8O9)} are typical for mononuclear tetragonally elongated Cu(II) octahedra. In this latter series of complexes, the tendency toward the formation of polymeric Cu(II)-I analogues is small because the polydentate I effectively wraps up the mononuclear Cu(II) center. This work shows that Cu(II) could potentially mediate the chemistry of sialoglycoconjugate-containing proteins in human biology, such as the sialylated amyloid precursor protein of relevance to Alzheimer's disease.  相似文献   

11.
A series of sulfonate-tagged 1,4-diazabutadiene (DAD(S)) ligands was prepared as salts with typical ionic liquid (IL) cations ([EMIM](+), [BMIM](+), [BMMIM](+), Bu(4)N(+), Bu(3)PMe(+), [Gua-4,4-4,4-4,1](+)). Complexation behaviour of the ligands was investigated by preparing complexes of the types [BMMIM](2)[MCl(2)(DAD(S))] (M = Pd, Pt), [BMMIM][Rh(COD)(DAD(S))] and [BMMIM](2)[Mo(CO)(4)(DAD(S))]. Using UV-Vis spectroscopy, the latter sulfonate-tagged chromophore was shown to be well soluble in the sulfonate IL [BMIM]OTf and completely insoluble in toluene, resulting in perfect immobilization. The crystal structures of [HNEt(3)](2)[2,6-Me(2)-Me-DAD(S)], [BMIM](2)[2,6-Me(2)-Me-DAD(S)], [BMMIM](2)[2,4,6-Me(3)-Me-DAD(S)], [BMMIM](2)[2,6-iPr(2)-Me-DAD(S)] and [HNEt(3)](2)[PdCl(2)(2,6-Me(2)-Me-DAD(S))] were determined. Regarding the diimine fragment, they show geometries similar to the respective non-sulfonated parent compounds.  相似文献   

12.
The syntheses of a new 1,4,7,10-tetraazacyclododecane (cyclen) derivative bearing a picolinate pendant arm (HL1), and its 1,4,8,11-tetraazacyclotetradecane (cyclam) analogue HL2, were achieved by using two different selective-protection methods involving the preparation of cyclen-bisaminal or phosphoryl cyclam derivatives. The acid-base properties of both compounds were investigated as well as their coordination chemistry, especially with Cu(2+), in aqueous solution and in solid state. The copper(II) complexes were synthesized, and the single crystal X-ray diffraction structures of compounds of formula [Cu(HL)](ClO(4))(2)·H(2)O (L = L1 or L2), [CuL1](ClO(4)) and [CuL2]Cl·2H(2)O, were determined. These studies revealed that protonation of the complexes occurs on the carboxylate group of the picolinate moiety. Stability constants of the complexes were determined at 25.0 °C and ionic strength 0.10 M in KNO(3) using potentiometric titrations. Both ligands form complexes with Cu(2+) that are thermodynamically very stable. Additionally, both HL1 and HL2 exhibit an important selectivity for Cu(2+) over Zn(2+). The kinetic inertness in acidic medium of both complexes of Cu(2+) was evaluated by spectrophotometry revealing that [CuL2](+) is much more inert than [CuL1](+). The determined half-life values also demonstrate the very high kinetic inertness of [CuL2](+) when compared to a list of copper(II) complexes of other macrocyclic ligands. The coordination geometry of the copper center in the complexes was established in aqueous solution from UV-visible and electron paramagnetic resonance (EPR) spectroscopy, showing that the solution structures of both complexes are in excellent agreement with those of crystallographic data. Cyclic voltammetry experiments point to a good stability of the complexes with respect to metal ion dissociation upon reduction of the metal ion to Cu(+) at about neutral pH. Our results revealed that the cyclam-based ligand HL2 is a very attractive receptor for copper(II), presenting a fast complexation process, a high kinetic inertness, and important thermodynamic and electrochemical stability.  相似文献   

13.
Copper(II) complexes with the herbicide N-(phosphonomethyl)glycine (glyphosate) have been investigated in aqueous solution by means of pH-metric measurements at different temperatures, 5 相似文献   

14.
The mobility of the radical center in three isomeric triglycine radical cations[G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) has been investigated theoretically via density functional theory (DFT) and experimentally via tandem mass spectrometry. These radical cations were generated by collision-induced dissociations (CIDs) of Cu(II)-containing ternary complexes that contain the tripeptides YGG, GYG, and GGY, respectively (G and Y are the glycine and tyrosine residues, respectively). Dissociative electron transfer within the complexes led to observation of [Y(*)GG](+), [GY(*)G](+), and [GGY(*)](+); CID resulted in cleavage of the tyrosine side chain as p-quinomethide, yielding [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+), respectively. Interconversions between these isomeric triglycine radical cations have relatively high barriers (> or = 44.7 kcal/mol), in support of the thesis that isomerically pure [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) can be experimentally produced. This is to be contrasted with barriers < 17 kcal/mol that were encountered in the tautomerism of protonated triglycine [Rodriquez C. F. et al. J. Am. Chem. Soc. 2001, 123, 3006-3012]. The CID spectra of [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) were substantially different, providing experimental proof that initially these ions have distinct structures. DFT calculations showed that direct dissociations are competitive with interconversions followed by dissociation.  相似文献   

15.
The synthesis of the new potentially hexadentate ligands N,N'-bis(2,2'-bipyridin-6-ylmethyl)butane-1,4-diamine (bmbu), N,N'-bis(2,2'-bipyridin-6-ylmethyl)pentane-1,5-diamine (bmpt) and N,N'-bis(2,2'-bipyridin-6-ylmethyl)octane-1,8-diamine (bmot) from the condensation of 2,2'-bipyridine-6-carbaldehyde with the appropriate diamine (butane-1,4-diamine, pentane-1,5-diamine and octane-1,8-diamine, respectively) and subsequent reduction, is reported. Bmet, bmpp and bmbu all form mononuclear complexes with first-row transition metal ions (Co(3+), Fe(2+), Ni(2+), Mn(2+)), and X-ray structures of [Mn(bmet)](ClO(4))(2), [Ni(bmet)](ClO(4))(2), [Fe(bmet)](ClO(4))(2), [Mn(bmpp)](ClO(4))(2)·2MeCN and [Co(bmpp)](ClO(4))(3)·H(2)O are reported. As the aliphatic methylene chain increases in length, formation of dinuclear, and in some cases trinuclear, complexes becomes more pronounced, as evidenced by mass spectral analysis of solutions containing Ni(2+) and bmpt, and Ni(2+), Fe(2+) and Mn(2+) with bmot. The increasing preference for multinuclear complexes with increasing chain length is ascribed to the difficulty of incorporating a medium-sized (8 to 13-membered) chelate ring in a mononuclear complex.  相似文献   

16.
Three new trinuclear copper(II) complexes, [(CuL(1))(3)(micro(3)-OH)][ClO(4)](2).3 H(2)O (1), [(CuL(2))(3)(micro(3)-OH)][ClO(4)](2).H(2)O (2), and [(CuL(3))(3)(micro(3)-OH)][ClO(4)](2).7 H(2)O (3) have been synthesized from the three tridentate Schiff bases HL(1), HL(2), and HL(3) (HL(1)=6- aminomethyl-3-methyl-1-phenyl-4-azahex-2-en-1-one, HL(2)=6-aminoethyl-3-methyl-1-phenyl-4-azahex-2-en-1-one, and HL(3)=6-aminodimethyl-3-methyl-1-phenyl-4-azahex-2-en-1-one). They have been characterized by X-ray crystallography and IR and UV spectroscopy, and their magnetic properties have been investigated. All the compounds contain a partial cubane [Cu(3)O(4)] core consisting of the trinuclear unit [(CuL)(3)(micro(3)-OH)](2+), perchlorate ions, and water molecules. In each of the complexes, the copper atoms are five-coordinate with a distorted square-pyramidal geometry except complex 1, in which one of the Cu(II) of the trinuclear unit is weakly coordinated to one of the perchlorate ions. Magnetic measurements performed in SQUID MPMS-XL7 using polycrystalline samples at an applied field of 2 kOe indicate a global intramolecular ferromagnetic coupling. Magnetostructural correlations have been calculated on the basis of theoretical models without symmetry restriction. Continuous shape measurements are an appropriate tool for establishing the degree of distortion of the Cu(II) from square-planar geometry. Structural, theoretical, and experimental magnetic data indicate that the higher the degree of distortion, the greater the ferromagnetic coupling.  相似文献   

17.
For this study, the N'-monoamide derivatives of TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid), N'-methylamide (TTDA-MA), N'-benzylamide (TTDA-BA), and N'-2-methoxybenzylamide (TTDA-MOBA), were synthesized. Their protonation constants and stability constants (log K(ML)'s) formed with Ca(2+), Zn(2+), Cu(2+), and Gd(3+) were determined by potentiometric titration in 0.10 M Me(4)NCl at 25.0 +/- 0.1 degrees C. The relaxivity values of [Gd(TTDA-MA)](-), [Gd(TTDA-BA)](-), and [Gd(TTDA-MOBA)](-) remained constant with respect to pH changes over the range 4.5-12.0. The (17)O NMR chemical shift of H(2)O induced by [Dy(TTDA-MA)(H(2)O)](-) at pH 6.80 showed 0.9 inner-sphere water molecules. Water proton relaxivity values for [Gd(TTDA-MA)(H(2)O)](-), [Gd(TTDA-BA)(H(2)O)](-), and [Gd(TTDA-MOBA)(H(2)O)](-) at 37.0 +/- 0.1 degrees C and 20 MHz are 3.89, 4.21, and 4.25, respectively. The water-exchange lifetime (tau(M)) and rotational correlation time (tau(R)) of [Gd(TTDA-MA)(H(2)O)](-), [Gd(TTDA-BA)(H(2)O)](-), and [Gd(TTDA-MOBA)(H(2)O)](-) are obtained from reduced the (17)O relaxation rate and chemical shifts of H(2)(17)O. The (2)H NMR longitudinal relaxation rates of the deuterated diamagnetic lanthanum complexes for the rotational correlation time were also thoroughly investigated. The water-exchange rates (K(298)(ex) for [Gd(TTDA-MA)(H(2)O)](-), [Gd(TTDA-BA)(H(2)O)](-), and [Gd(TTDA-MOBA)(H(2)O)](-) are lower than that of [Gd(TTDA)(H(2)O)](2)(-) but significantly higher than those of [Gd(DTPA)(H(2)O)](2)(-) and [Gd(DTPA-BMA)(H(2)O)]. The rotational correlation times for [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-) are significantly longer than those of [Gd(TTDA)(H(2)O)](2)(-) and [Gd(DTPA)(H(2)O)](2)(-) complexes. The marked increase of the relaxivity of [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-) results mainly from their longer rotational correlation time. The noncovalent interaction between human serum albumin (HSA) and [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-) complexes containing a hydrophobic substituent was investigated by measuring the water proton relaxation rate of the aqueous solutions. The binding association constant (K(A)) values are 1.0 +/- 0.2 x 10(3) and 1.3 +/- 0.2 x 10(3) M(-1) for [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-), which indicates a stronger interaction of [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-) with HSA.  相似文献   

18.
Deeth RJ  Elding LI 《Inorganic chemistry》1996,35(17):5019-5026
Density functional theory is applied to modeling the exchange in aqueous solution of H(2)O on [Pd(H(2)O)(4)](2+), [Pt(H(2)O)(4)](2+), and trans-[PtCl(2)(H(2)O)(2)]. Optimized structures for the starting molecules are reported together with trigonal bipyramidal (tbp) systems relevant to an associative mechanism. While a rigorous tbp geometry cannot by symmetry be the actual transition state, it appears that the energy differences between model tbp structures and the actual transition states are small. Ground state geometries calculated via the local density approximation (LDA) for [Pd(H(2)O)(4)](2+) and relativistically corrected LDA for the Pt complexes are in good agreement with available experimental data. Nonlocal gradient corrections to the LDA lead to relatively inferior structures. The computed structures for analogous Pd and Pt species are very similar. The equatorial M-OH(2) bonds of all the LDA-optimized tbp structures are predicted to expand by 0.25-0.30 ?, while the axial bonds change little relative to the planar precursors. This bond stretching in the transition state counteracts the decrease in partial molar volume caused by coordination of the entering water molecule and can explain qualitatively the small and closely similar volumes of activation observed. The relatively higher activation enthalpies of the Pt species can be traced to the relativistic correction of the total energies while the absolute DeltaH() values for exchange on [Pd(H(2)O)(4)](2+) and [Pt(H(2)O)(4)](2+) are reproduced using relativistically corrected LDA energies and a simple Born model for hydration. The validity of the latter is confirmed via some simple atomistic molecular mechanics estimates of the relative hydration enthalpies of [Pd(H(2)O)(4)](2+) and [Pd(H(2)O)(5)](2+). The computed DeltaH() values are 57, 92, and 103 kJ/mol compared to experimental values of 50(2), 90(2), and 100(2) kJ/mol for [Pd(H(2)O)(4)](2+), [Pt(H(2)O)(4)](2+), and trans-[PtCl(2)(H(2)O)(2)], respectively. The calculated activation enthalpy for a hypothetical dissociative water exchange at [Pd(H(2)O)(4)](2+) is 199 kJ/mol. A qualitative analysis of the modeling procedure, the relative hydration enthalpies, and the zero-point and finite temperature corrections yields an estimated uncertainty for the theoretical activation enthalpies of about 15 kJ/mol.  相似文献   

19.
A set of enantiomerically pure cyclic multinuclear complexes with the formula cis-[a(2)PdL](n) (n+) [a(2)=(R,R)-1,2-diaminocyclohexane (R,R-dach), (S,S)-1,2-diaminocyclohexane (S,S-dach); n=4, 6; LH=2-hydroxypyrimidine (2-Hpymo), 4,6-dimethyl-2-hydroxypyrimidine (2-Hdmpymo) and 4-hydroxypyrimidine (4-Hpymo)] were obtained by reaction of cis-[a(2)Pd(H(2)O)(2)](2+) and LH in aqueous media. The polynuclear complexes were studied by (1)H NMR spectroscopy and X-ray crystallography. These studies revealed that the N1,N3-bridging mode exhibited by the pyrimidine moieties is ideally suited for formation of inorganic analogues of calixarenes (metallacalixarenes) in a self-assembly process. The most stable species are the tetranuclear metallacalix[4]arenes, which are obtained in all cases. Hexanuclear species, namely, [a(2)Pd(2-dmpymo)](6) (6+), were also isolated and fully characterised. (1)H NMR experiments show conversion of [a(2)Pd(2-dmpymo)](6) (6+) to [a(2)Pd(2-dmpymo)](4) (4+) on heating. Analogously to organic calixarenes, these systems are also capable of incorporating hard metal ions at the oxo surface. Additionally, investigations on the receptor properties of these metallacalixarenes towards mononucleotides showed that enantioselective recognition processes occur in aqueous media.  相似文献   

20.
The tripodal amino-phosphinate ligands, tris(4-(phenylphosphinato)-3-benzyl-3-azabutyl)amine (H(3)ppba.2HCl.H(2)O) and tris(4-(phenylphosphinato)-3-azabutyl)amine (H(3)ppa.HCl.H(2)O) were synthesized and reacted with Al(3+), Ga(3+), In(3+) and the lanthanides (Ln(3+)). At 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(3)ppba)(2)](3+)(M = Al(3+), Ga(3+), In(3+), Ho(3+)-Lu(3+)) were isolated. The bicapped [Ga(H(3)ppba)(2)](NO(3))(2)Cl.3CH(3)OH was structurally characterized and was shown indirectly by various techniques to be isostructural with the other [M(H(3)ppba)(2)](3+) complexes. Also, at 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)(2)](5+)(M = La(3+)-Tb(3+)) were characterized, and the X-ray structure of [Gd(H(4)ppba)(2)](NO(3))(4)Cl.3CH(3)OH was determined. At 1 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)](4+)(M = La(3+)-Er(3+)) were isolated and characterized. Elemental analysis and spectroscopic evidence supported the formation of a 1 : 1 monocapped complex. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+), complex of the type [Ga(ppa)].3H(2)O was obtained. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+) a neutral complex [Ga(ppa)].3H(2)O was obtained. The formation of an encapsulated 1 : 1 complex is supported by elemental analysis and spectroscopic evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号